ProcessPoolExecutor和ThreadPoolExecutor区别

时间: 2023-11-02 10:55:31 浏览: 153
ProcessPoolExecutor和ThreadPoolExecutor都是Python中用于并发执行任务的类,但它们之间有一些重要的区别。 1. 多进程 vs 多线程:ProcessPoolExecutor使用多个进程来执行任务,而ThreadPoolExecutor使用多个线程来执行任务。由于Python的全局解释锁(GIL)限制,多线程在CPU密集型任务中的并行性能可能受到限制,而多进程可以充分利用多核处理器。 2. 内存占用:由于每个进程都有独立的内存空间,ProcessPoolExecutor可能会占用更多的内存。而ThreadPoolExecutor则共享同一进程的内存空间,因此内存占用通常较低。 3. 序列化和通信开销:在ProcessPoolExecutor中,任务和结果需要通过序列化和进程间通信来传输。这会引入额外的开销,并且需要保证任务和结果都是可序列化的。而ThreadPoolExecutor中的任务和结果可以直接在线程之间共享,无需序列化和通信开销。 4. 可扩展性:由于多进程可以利用多核处理器,并且相互之间独立运行,ProcessPoolExecutor在处理大量CPU密集型任务时具有更好的可扩展性。而ThreadPoolExecutor适用于IO密集型任务,因为线程可以在等待IO操作时释放GIL,充分利用CPU资源。 综上所述,如果你的任务是CPU密集型的,且对内存占用不敏感,可以选择ProcessPoolExecutor。如果你的任务是IO密集型的,且对内存占用敏感,可以选择ThreadPoolExecutor。
相关问题

ThreadPoolExecutor和ProcessPoolExecutor区别

ThreadPoolExecutor和ProcessPoolExecutor是Python中用于并发执行任务的两个类。它们的主要区别在于执行任务的方式和适用场景。 ThreadPoolExecutor是线程池执行器,它使用线程来执行任务。线程是轻量级的执行单元,可以在同一个进程内并发执行多个任务。ThreadPoolExecutor适用于IO密集型任务,例如网络请求、文件读写等。它的优势在于线程的创建和销毁开销较小,适合大量短时间的任务。 ProcessPoolExecutor是进程池执行器,它使用进程来执行任务。进程是独立的执行环境,每个进程都有自己的内存空间和系统资源。ProcessPoolExecutor适用于CPU密集型任务,例如大量计算、图像处理等。它的优势在于可以充分利用多核CPU,并且进程之间相互独立,不会受到一个任务的异常影响其他任务。 总结一下: - ThreadPoolExecutor适用于IO密集型任务,使用线程执行任务。 - ProcessPoolExecutor适用于CPU密集型任务,使用进程执行任务。

ThreadPoolExecutor和ProcessPoolExecutor的区别

ThreadPoolExecutor和ProcessPoolExecutor是Python标准库concurrent.futures模块中的两个类,用于实现并发执行任务的线程池和进程池。它们的区别主要体现在以下几个方面: 1. 线程与进程:ThreadPoolExecutor使用线程来执行任务,而ProcessPoolExecutor使用进程来执行任务。线程是轻量级的执行单元,多个线程共享同一个进程的资源,适合于I/O密集型任务;而进程是独立的执行单元,每个进程有自己独立的资源空间,适合于CPU密集型任务。 2. 并发度:ThreadPoolExecutor的并发度受限于GIL(全局解释器锁),因为在CPython解释器中,同一时间只能有一个线程执行Python字节码。而ProcessPoolExecutor没有GIL的限制,可以同时执行多个进程,从而实现更高的并发度。 3. 可扩展性:由于GIL的存在,ThreadPoolExecutor在CPU密集型任务中无法利用多核优势,因为多个线程无法同时执行Python字节码。而ProcessPoolExecutor可以充分利用多核CPU的优势,提供更好的可扩展性。 4. 内存消耗:由于线程共享进程的资源空间,ThreadPoolExecutor的内存消耗相对较少。而ProcessPoolExecutor每个进程都有自己独立的资源空间,因此会消耗更多的内存。
阅读全文

相关推荐

import requestsfrom html.parser import HTMLParserimport argparsefrom concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completedimport multiprocessingprefix = "save/"readed_path = multiprocessing.Manager().Queue()cur_path = multiprocessing.Manager().Queue()new_path = multiprocessing.Manager().Queue()lock = multiprocessing.Lock()class MyHttpParser(HTMLParser): def __init__(self): super().__init__() self.tag = [] self.href = "" self.txt = "" def handle_starttag(self, tag, attrs): self.tag.append(tag) if tag == "a": for att in attrs: if att[0] == 'href': self.href = att[1] def handle_endtag(self, tag): if tag == "a" and len(self.tag) > 2 and self.tag[-2] == "div": print("in div, link txt is %s ." % self.txt) print("in div, link url is %s ." % self.href) if not self.href in readed_path.queue: readed_path.put(self.href) new_path.put(self.href) self.tag.pop(-1) def handle_data(self, data): if len(self.tag) >= 1 and self.tag[-1] == "a": self.txt = datadef LoadHtml(path, file_path): if len(file_path) == 0: file_path = "/" url = f"http://{path}{file_path}" try: response = requests.get(url) print(response.status_code, response.reason, response.raw.version) data = response.content.decode("utf-8") if response.status_code == 301: data = response.headers["Location"] if not data in readed_path.queue: new_path.put(data) data = "" return data except Exception as e: print(e.args)def ParseArgs(): parser = argparse.ArgumentParser() parser.add_argument("-p", "--path", help="domain name") parser.add_argument("-d", "--deep", type=int, help="recursion depth") args = parser.parse_args() return argsdef formatPath(path): path = path.removeprefix("https://") path = path.removeprefix("http://") path = path.removeprefix("//") return pathdef doWork(path): path = formatPath(path) m = path.find("/") if m == -1: m = len(path) data = LoadHtml(path[:m], path[m:]) with open(prefix + path[:m] + ".html", "w+", encoding="utf-8") as f: f.write(data) parse.feed(data)def work(maxdeep): args = ParseArgs() cur_path.put(formatPath(args.path)) readed_path.put(formatPath(args.path)) parse = MyHttpParser() with ProcessPoolExecutor(max_workers=4) as executor: for i in range(args.deep): size = cur_path.qsize() futures = [executor.submit(doWork, cur_path.get()) for _ in range(size)] for future in as_completed(futures): try: future.result() except Exception as e: print(e) cur_path.queue.clear() while not new_path.empty(): cur_path.put(new_path.get()) print(i)if __name__ == '__main__': work(5)此代码出现Unresolved reference 'parse'

最新推荐

recommend-type

Python 多线程+多进程简单使用教程,如何在多进程开多线程

`ThreadPoolExecutor` 和 `ProcessPoolExecutor` 分别用于创建线程池和进程池。线程池可以管理一组可重用的线程,避免频繁创建和销毁线程的开销。而进程池则管理一组进程,提供类似线程池的功能。 以下是一个使用`...
recommend-type

精选毕设项目-微笑话.zip

精选毕设项目-微笑话
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->