基于麻雀优化算法的lstm代码python
时间: 2023-12-13 16:00:38 浏览: 175
基于麻雀算法优化的LSTM分类算法
基于麻雀优化算法的LSTM代码Python实现如下:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
# 定义LSTM模型
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.lstm = nn.LSTM(input_size, hidden_size)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, input):
hidden = self.init_hidden()
lstm_out, _ = self.lstm(input.view(len(input), 1, -1), hidden)
output = self.linear(lstm_out.view(len(input), -1))
return output[-1]
def init_hidden(self):
return (Variable(torch.zeros(1, 1, self.hidden_size)),
Variable(torch.zeros(1, 1, self.hidden_size)))
# 麻雀优化算法
def sparrow_optimization(params, data, labels):
input_size = len(data[0])
hidden_size = params[0]
output_size = len(labels[0])
model = LSTM(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=params[1], momentum=params[2])
# 训练模型
for epoch in range(params[3]):
optimizer.zero_grad()
input = Variable(torch.Tensor(data))
target = Variable(torch.Tensor(labels))
output = model(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()
return model
# 使用麻雀优化算法训练LSTM模型
def train_lstm_with_sparrow_optimization():
# 设定参数范围和初始值
params_range = [(10, 100), (0.001, 0.1), (0.1, 0.9), (100, 1000)]
params = [50, 0.01, 0.5, 500] # 初始值
best_loss = float('inf')
best_model = None
# 遍历参数范围,找到最优模型
for _ in range(100):
# 在参数范围内随机生成新的参数
new_params = [torch.FloatTensor(1).uniform_(min_val, max_val).item()
for (min_val, max_val) in params_range]
# 训练LSTM模型并计算损失
model = sparrow_optimization(new_params, data, labels)
input = Variable(torch.Tensor(data))
target = Variable(torch.Tensor(labels))
output = model(input)
loss = nn.MSELoss()(output, target).item()
# 如果损失更小,则更新最优模型和对应参数
if loss < best_loss:
best_loss = loss
best_model = model
params = new_params
# 返回最优模型
return best_model
# 使用麻雀优化算法训练LSTM模型
best_model = train_lstm_with_sparrow_optimization()
```
以上是一个使用麻雀优化算法训练LSTM模型的Python代码示例。使用该代码可以根据给定的数据和标签,自动寻找最优的LSTM模型参数,并返回最优的LSTM模型。
阅读全文