麻雀优化算法优化LSTM神经网络参数:units、batch size、learning rate 代码示例
时间: 2024-01-25 12:02:18 浏览: 101
采用改进麻雀算法优化LSTM网络中的学习率、LSTM单元数
5星 · 资源好评率100%
好的,我可以为您提供一个简单的代码示例,使用麻雀优化算法来优化LSTM神经网络的参数:units、batch size和learning rate。
首先,我们需要定义一个函数来训练LSTM模型并返回模型的准确率:
```python
import numpy as np
from keras.models import Sequential
from keras.layers import LSTM, Dense
from sklearn.model_selection import train_test_split
def train_lstm(units, batch_size, learning_rate):
# Load data
X = np.load("X.npy")
y = np.load("y.npy")
# Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Define LSTM model
model = Sequential()
model.add(LSTM(units=units, batch_size=batch_size, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(Dense(1, activation="sigmoid"))
# Compile model
model.compile(loss="binary_crossentropy", optimizer=Adam(lr=learning_rate), metrics=["accuracy"])
# Train model
model.fit(X_train, y_train, epochs=10, batch_size=batch_size, validation_data=(X_test, y_test))
# Evaluate model
_, accuracy = model.evaluate(X_test, y_test, batch_size=batch_size)
return accuracy
```
接下来,我们使用麻雀优化算法来搜索最佳参数。我们将使用 `pyswarms` 库来实现麻雀优化算法:
```python
import pyswarms as ps
# Define bounds for parameters
bounds = (np.array([16, 32, 64, 128]), # units
np.array([16, 32, 64, 128]), # batch size
np.array([0.0001, 0.001, 0.01, 0.1])) # learning rate
# Define objective function for optimization
def objective_function(params):
units = params[0]
batch_size = params[1]
learning_rate = params[2]
return -train_lstm(units, batch_size, learning_rate)
# Define optimizer
optimizer = ps.single.GlobalBestPSO(n_particles=10, dimensions=3, options={"c1": 0.5, "c2": 0.3, "w": 0.9})
# Perform optimization
best_params, best_value = optimizer.optimize(objective_function, iters=10, bounds=bounds)
# Print best parameters and accuracy
print("Best parameters: ", best_params)
print("Best accuracy: ", -best_value)
```
在上面的代码中,我们使用 `pyswarms.single.GlobalBestPSO` 类来定义优化器,它使用全局最佳粒子群优化算法来搜索最佳参数。我们将 `objective_function` 函数传递给优化器,它将返回训练LSTM模型得到的准确率的负值(因为我们正在最小化目标函数)。然后,我们使用 `optimizer.optimize` 函数来执行优化,它将返回最佳参数和目标函数的最小值(即最高准确率)。
最后,我们可以使用最佳参数来训练LSTM模型并进行预测。
请注意,这只是一个简单的示例代码,您可能需要根据自己的数据和任务进行修改。
阅读全文