keras全局均值池化层
时间: 2024-08-28 10:01:08 浏览: 45
Keras是一个高级神经网络API,它能够以TensorFlow, CNTK, 或者Theano作为后端运行。全局平均池化层(GlobalAveragePooling2D)是Keras中的一个层,它主要用于将三维的卷积层输出压缩成一个单一值,进而可以被用于后面的全连接层。
全局平均池化层的主要作用是减少参数的数量,防止过拟合,同时可以作为替代全连接层的一种方式。在卷积神经网络中,全连接层往往会导致模型参数量的急剧增加,而全局平均池化层则可以有效减少参数,因为它将每个特征图(feature map)的所有激活值都简化为单个数值。
全局平均池化层通过计算输入特征图的平均值来工作,通常用于卷积层之后,可以减少特征空间的维度,而不考虑具体的特征位置。这种池化操作有助于保留全局的统计信息,同时去除多余的特征图空间。
相关问题
能给我讲讲这段代码吗def tcnBlock(incoming, filters, kernel_size, dilation_rate): net = incoming identity = incoming # net = BatchNormalization()(net) # net = Activation('relu')(net) net = keras.layers.LeakyReLU(alpha=0.2)(net) net = keras.layers.Dropout(0.3)(net) net = Conv1D(filters, kernel_size, padding='causal', dilation_rate=dilation_rate, kernel_regularizer=regularizers.l2(1e-3))(net) # net = BatchNormalization()(net) net = Activation('relu')(net) # net = keras.layers.LeakyReLU(alpha=0.2)(net) net = keras.layers.Dropout(0.3)(net) net = Conv1D(filters, kernel_size, padding='causal', dilation_rate=dilation_rate, kernel_regularizer=regularizers.l2(1e-3))(net) # 计算全局均值 net_abs = Lambda(abs_backend)(net) abs_mean = GlobalAveragePooling1D()(net_abs) # 计算系数 # 输出通道数 scales = Dense(filters, activation=None, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(1e-4))(abs_mean) # scales = BatchNormalization()(scales) scales = Activation('relu')(scales) scales = Dense(filters, activation='sigmoid', kernel_regularizer=regularizers.l2(1e-4))(scales) scales = Lambda(expand_dim_backend)(scales) # 计算阈值 thres = keras.layers.multiply([abs_mean, scales]) # 软阈值函数 sub = keras.layers.subtract([net_abs, thres]) zeros = keras.layers.subtract([sub, sub]) n_sub = keras.layers.maximum([sub, zeros]) net = keras.layers.multiply([Lambda(sign_backend)(net), n_sub]) if identity.shape[-1] == filters: shortcut = identity else: shortcut = Conv1D(filters, kernel_size, padding='same')(identity) # shortcut(捷径) net = keras.layers.add([net, shortcut]) return net
这段代码实现了一个 TCN (Temporal Convolutional Network) 的基本块,用于时间序列数据的建模和预测。具体来说,它包含了以下步骤:
1. 输入:incoming 是输入的时间序列数据。
2. 两个卷积层:每个卷积层包含了一个卷积操作和一个激活函数(LeakyReLU)操作。这两个卷积层的输出通道数为 filters,卷积核大小为 kernel_size,扩张率为 dilation_rate。这里使用了因果卷积(causal convolution),保证了模型能够有效处理时间序列数据。
3. 全局均值池化层:计算了卷积层输出的绝对值的全局均值。
4. 系数计算层:使用全连接层计算了一个与输出通道数相同的系数向量,用于控制软阈值函数的阈值。
5. 阈值计算层:将全局均值和系数相乘得到阈值。
6. 软阈值函数:使用软阈值函数对卷积层输出进行滤波。
7. 捷径连接:如果输入和输出的通道数不一致,使用一个卷积层将输入的通道数变为输出的通道数,然后将它们相加得到最终的输出。
这个基本块可以通过堆叠多个相同的块来构建一个完整的 TCN 模型,以实现更复杂的时间序列建模和预测任务。
阅读全文