python opencv 轮廓筛选

时间: 2024-10-11 18:00:30 浏览: 95
在Python中,OpenCV是一个强大的计算机视觉库,常常用于图像处理和分析。当我们从图像中检测出轮廓(contours)后,有时需要对这些轮廓进行筛选,以便进一步的操作如物体识别、分割等。轮廓筛选通常涉及以下几个步骤: 1. **边缘检测**:首先,使用OpenCV函数如`cv2.Canny()`或`cv2.findContours()`进行边缘检测,这会返回图像中的轮廓。 2. **轮廓提取**:通过调用`findContours()`并结合适当参数(例如`cv2.RETR_EXTERNAL`和`cv2.CHAIN_APPROX_SIMPLE`),我们可以从边缘中提取出完整的轮廓。 3. **属性检查**:对于每个轮廓,可以获取其基本属性,如面积、周长、形状(是否接近圆形)等,使用`cv2.contourArea()`、`cv2.arcLength()`等函数。 4. **条件过滤**:可以根据需要设置阈值,比如只保留面积大于某个值的轮廓,或去除太小或太大的轮廓。可以使用`if`语句进行判断。 5. **存储或操作**:筛选后的轮廓可以直接用于后续的图像处理或进行更复杂的特征分析。
相关问题

python opencv 轮廓检测面积筛选

在Python OpenCV中,轮廓检测是一种常用的功能,用于识别图像中的边缘和形状。如果你想要筛选出特定大小的轮廓,可以按照以下步骤操作: 1. **读取和预处理图像**:使用`cv2.imread()`加载图片,并通过`cv2.cvtColor()`转换为灰度图,便于后续轮廓检测。 ```python import cv2 img = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE) ``` 2. **二值化**:如果需要,你可以将图像二值化以便更容易检测轮廓,这通常通过阈值化(例如Otsu's阈值法)或者自适应阈值(如`cv2.adaptiveThreshold()`)实现。 3. **找到轮廓**:使用`cv2.findContours()`函数找出轮廓及其对应的外接矩形。注意,这个函数返回的是一个包含多个元素的元组,你需要调整索引来获取轮廓信息。 4. **计算轮廓面积**:对于每个轮廓,可以使用`cv2.contourArea()`函数计算其面积。 5. **面积筛选**:遍历轮廓,只保留满足指定面积范围内的轮廓。例如,如果你想筛选大于100像素小于500像素的轮廓,可以这样做: ```python min_area = 100 max_area = 500 for contour in contours: area = cv2.contourArea(contour) if min_area < area < max_area: # 对选定的轮廓做进一步处理... ``` 6. **可视化结果**:最后,你可以选择显示筛选后的轮廓,或者进行其他分析。

python opencv轮廓检测,抠图

### 使用 Python 和 OpenCV 实现轮廓检测与抠图 #### 轮廓检测基础原理 在计算机视觉领域,轮廓是指具有相同颜色或强度的边界点所组成的曲线。通过查找这些边界可以识别物体形状并用于后续分析。 对于图像中的目标对象提取,通常先应用边缘检测技术来获取二值化后的边缘信息,再基于此寻找闭合区域即为所需轮廓[^1]。 #### 图像预处理阶段 为了提高最终效果,在执行上述过程前往往还需要做些准备工作: - **灰度转换**:彩色图片转成单通道灰度形式以便简化计算; - **噪声去除**:利用高斯模糊等方式减少不必要的细节干扰; - **调整大小**:当源文件分辨率过高时可适当缩小尺寸以加快速度[^2]。 ```python import numpy as np import cv2 def preprocess_image(image_path): img = cv2.imread(image_path) # 将图像缩放至合适大小 resized_img = cv2.resize(img, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_AREA) gray = cv2.cvtColor(resized_img, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) return blurred ``` #### 执行边缘检测 采用 Scharr 算子能够更精确捕捉到方向上的变化情况,从而获得更好的边缘特征表达。之后通过对 X、Y 方向的结果取绝对值得到正负边沿都可见的形式,并加权求和合成完整的边缘响应图谱。 ```python def detect_edges(preprocessed_img): scharrx = cv2.Scharr(preprocessed_img, cv2.CV_64F, 1, 0) scharry = cv2.Scharr(preprocessed_img, cv2.CV_64F, 0, 1) abs_scharrx = cv2.convertScaleAbs(scharrx) abs_scharry = cv2.convertScaleAbs(scharry) edges = cv2.addWeighted(abs_scharrx, 0.5, abs_scharry, 0.5, 0) _, binary_edges = cv2.threshold(edges, 30, 255, cv2.THRESH_BINARY) return binary_edges ``` #### 寻找并绘制轮廓 一旦有了清晰定义好的边缘映射,则可以通过 `findContours` 函数轻松定位所有封闭图形的位置及其层次结构关系。接着就可以按照面积筛选出感兴趣的对象范围,并填充对应的颜色完成抠图工作[^3]。 ```python def extract_contours(edge_detected_img, original_img): contours, _ = cv2.findContours( edge_detected_img.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) mask = np.zeros_like(original_img) for cnt in contours: area = cv2.contourArea(cnt) if area > 500: # 只保留较大面积的目标 cv2.drawContours(mask, [cnt], -1, color=(255, 255, 255), thickness=-1) result = cv2.bitwise_and(original_img, mask) return result ```
阅读全文

相关推荐

大家在看

recommend-type

基于springboot的智慧食堂系统源码.zip

源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经过本地编译可运行的,下载完成之后配置相应环境即可使用。源码功能都是经过老师肯定的,都能满足要求,有需要放心下载即可。源码是经
recommend-type

C# 使用Selenium模拟浏览器获取CSDN博客内容

在C# 中通过Selenium以及Edge模拟人工操作浏览网页,并根据网络请求获取分页数据。获取分页数据后通过标签识别等方法显示在页面中。
recommend-type

百度离线地图开发示例代码,示例含海量点图、热力图、自定义区域和实时运行轨迹查看功能

百度离线地图开发示例代码,可以打开map.html直接查看效果。 海量点图绘制、自定义弹窗、热力图功能、自定义区域绘制、画出实时运行轨迹,车头实时指向行驶方向,设置角度偏移。 对于百度地图的离线开发具有一定的参考价值。 代码简单明了,初学者一看便懂。 如有问题可咨询作者。
recommend-type

易语言-momo/陌陌/弹幕/优雅看直播

陌陌直播弹幕解析源码。
recommend-type

机器视觉选型计算概述-不错的总结

机器视觉选型计算概述-不错的总结

最新推荐

recommend-type

基于Python和OpenCV的文档扫描.doc

总的来说,通过Python和OpenCV进行文档扫描涉及图像的读取、预处理、边缘检测、轮廓分析和透视变换等多个环节,这些技术共同提升了扫描图像的质量,使得电子文档的生成更加高效且准确,适应了现代信息时代的需求。
recommend-type

python+opencv实现车牌定位功能(实例代码)

为了进一步筛选出车牌区域,可以对轮廓进行分析,比如将轮廓规整为矩形,然后根据颜色进行识别。例如,车牌通常为蓝色或黄色,在 HSV 色彩空间中定义一个范围,使用 `cv2.inRange()` 进行颜色过滤,找到颜色最接近...
recommend-type

Python实现图片查找轮廓、多边形拟合、最小外接矩形代码

本篇文章将深入探讨如何使用Python的OpenCV库来实现这些功能,包括图片查找轮廓、多边形拟合以及计算最小外接矩形。 首先,我们来看轮廓查找。在给定的代码中,`cv2.findContours()`函数被用来从灰度图像中找到轮廓...
recommend-type

基于Python+Open CV的手势识别算法设计

肤色检测使用HSV颜色空间,其H(色调)、S(饱和度)、V(亮度)参数范围筛选能有效识别肤色。 通过这个项目,不仅能够掌握Open CV库的使用,还能了解手势识别的基本流程和技术难点,为未来在人机交互领域的深入...
recommend-type

Opencv二帧差法检测运动目标与提取轮廓

5. 对检测到的轮廓进行过滤,例如根据面积`CONTOUR_MAX_AERA`筛选掉可能的背景噪声。 6. 可以使用`cvDrawContours`等函数将轮廓绘制在原始图像上,以便于可视化。 轮廓提取是运动目标检测的后续步骤,它允许我们...
recommend-type

QML实现多功能虚拟键盘新功能介绍

标题《QML编写的虚拟键盘》所涉及的知识点主要围绕QML技术以及虚拟键盘的设计与实现。QML(Qt Modeling Language)是基于Qt框架的一个用户界面声明性标记语言,用于构建动态的、流畅的、跨平台的用户界面,尤其适用于嵌入式和移动应用开发。而虚拟键盘是在图形界面上模拟实体键盘输入设备的一种交互元素,通常用于触摸屏设备或在桌面环境缺少物理键盘的情况下使用。 描述中提到的“早期版本类似,但是添加了很多功能,添加了大小写切换,清空,定位插入删除,可以选择删除”,涉及到了虚拟键盘的具体功能设计和用户交互增强。 1. 大小写切换:在虚拟键盘的设计中,大小写切换是基础功能之一,为了支持英文等语言的大小写输入,通常需要一个特殊的切换键来在大写状态和小写状态之间切换。实现大小写切换时,可能需要考虑一些特殊情况,如连续大写锁定(Caps Lock)功能的实现。 2. 清空:清除功能允许用户清空输入框中的所有内容,这是用户界面中常见的操作。在虚拟键盘的实现中,一般会有一个清空键(Clear或Del),用于删除光标所在位置的字符或者在没有选定文本的情况下删除所有字符。 3. 定位插入删除:定位插入是指在文本中的某个位置插入新字符,而删除则是删除光标所在位置的字符。在触摸屏环境下,这些功能的实现需要精确的手势识别和处理。 4. 选择删除:用户可能需要删除一段文本,而不是仅删除一个字符。选择删除功能允许用户通过拖动来选中一段文本,然后一次性将其删除。这要求虚拟键盘能够处理多点触摸事件,并且有良好的文本选择处理逻辑。 关于【标签】中的“QML键盘”和“Qt键盘”,它们都表明了该虚拟键盘是使用QML语言实现的,并且基于Qt框架开发的。Qt是一个跨平台的C++库,它提供了丰富的API用于图形用户界面编程和事件处理,而QML则允许开发者使用更高级的声明性语法来设计用户界面。 从【压缩包子文件的文件名称列表】中我们可以知道这个虚拟键盘的QML文件的名称是“QmlKeyBoard”。虽然文件名并没有提供更多细节,但我们可以推断,这个文件应该包含了定义虚拟键盘外观和行为的关键信息,包括控件布局、按键设计、颜色样式以及交互逻辑等。 综合以上信息,开发者在实现这样一个QML编写的虚拟键盘时,需要对QML语言有深入的理解,并且能够运用Qt框架提供的各种组件和API。同时,还需要考虑到键盘的易用性、交互设计和触摸屏的特定操作习惯,确保虚拟键盘在实际使用中可以提供流畅、高效的用户体验。此外,考虑到大小写切换、清空、定位插入删除和选择删除这些功能的实现,开发者还需要编写相应的逻辑代码来处理用户输入的各种情况,并且可能需要对QML的基础元素和属性有非常深刻的认识。最后,实现一个稳定的、跨平台的虚拟键盘还需要开发者熟悉Qt的跨平台特性和调试工具,以确保在不同的操作系统和设备上都能正常工作。
recommend-type

揭秘交通灯控制系统:从电路到算法的革命性演进

# 摘要 本文系统地探讨了交通灯控制系统的发展历程及其关键技术,涵盖了从传统模型到智能交通系统的演变。首先,概述了交通灯控制系统的传统模型和电路设计基础,随后深入分析了基于电路的模拟与实践及数字控制技术的应用。接着,从算法视角深入探讨了交通灯控制的理论基础和实践应用,包括传统控制算法与性能优化。第四章详述了现代交通灯控制
recommend-type

rk3588 istore

### RK3588与iStore的兼容性及配置指南 #### 硬件概述 RK3588是一款高性能处理器,支持多种外设接口和多媒体功能。该芯片集成了六核GPU Mali-G610 MP4以及强大的NPU单元,适用于智能设备、边缘计算等多种场景[^1]。 #### 驱动安装 对于基于Linux系统的开发板而言,在首次启动前需确保已下载并烧录官方提供的固件镜像到存储介质上(如eMMC或TF卡)。完成初始设置之后,可通过命令行工具更新内核及相关驱动程序来增强稳定性与性能表现: ```bash sudo apt-get update && sudo apt-get upgrade -y ```
recommend-type

React购物车项目入门及脚本使用指南

### 知识点说明 #### 标题:“react-shopping-cart” 该标题表明本项目是一个使用React框架创建的购物车应用。React是由Facebook开发的一个用于构建用户界面的JavaScript库,它采用组件化的方式,使得开发者能够构建交互式的UI。"react-shopping-cart"暗示这个项目可能会涉及到购物车功能的实现,这通常包括商品的展示、选择、数量调整、价格计算、结账等常见电商功能。 #### 描述:“Create React App入门” 描述中提到了“Create React App”,这是Facebook官方提供的一个用于创建React应用的脚手架工具。它为开发者提供了一个可配置的环境,可以快速开始构建单页应用程序(SPA)。通过使用Create React App,开发者可以避免繁琐的配置工作,集中精力编写应用代码。 描述中列举了几个可用脚本: - `npm start`:这个脚本用于在开发模式下启动应用。启动后,应用会在浏览器中打开一个窗口,实时展示代码更改的结果。这个过程被称为热重载(Hot Reloading),它能够在不完全刷新页面的情况下,更新视图以反映代码变更。同时,控制台中会展示代码中的错误信息,帮助开发者快速定位问题。 - `npm test`:启动应用的交互式测试运行器。这是单元测试、集成测试或端到端测试的基础,可以确保应用中的各个单元按照预期工作。在开发过程中,良好的测试覆盖能够帮助识别和修复代码中的bug,提高应用质量。 - `npm run build`:构建应用以便部署到生产环境。此脚本会将React代码捆绑打包成静态资源,优化性能,并且通过哈希命名确保在生产环境中的缓存失效问题得到妥善处理。构建完成后,通常会得到一个包含所有依赖、资源文件和编译后的JS、CSS文件的build文件夹,可以直接部署到服务器或使用任何静态网站托管服务。 #### 标签:“HTML” HTML是构建网页内容的标准标记语言,也是构成Web应用的基石之一。在React项目中,HTML通常被 JSX(JavaScript XML)所替代。JSX允许开发者在JavaScript代码中使用类似HTML的语法结构,使得编写UI组件更加直观。在编译过程中,JSX会被转换成标准的JavaScript,这是React能够被浏览器理解的方式。 #### 压缩包子文件的文件名称列表:“react-shopping-cart-master” 文件名称中的“master”通常指的是版本控制系统(如Git)中的主分支。在Git中,master分支是默认分支,用于存放项目的稳定版本代码。当提到一个项目的名称后跟有“-master”,这可能意味着它是一个包含了项目主分支代码的压缩包文件。在版本控制的上下文中,master分支具有重要的地位,通常开发者会在该分支上部署产品到生产环境。
recommend-type

交通信号控制系统优化全解析:10大策略提升效率与安全性

# 摘要 本文综合介绍了交通信号控制系统的理论基础、实践应用、技术升级以及系统安全性与风险管理。首先概述了交通信号控制系统的发展及其在现代城市交通管理中的重要性。随后深入探讨了信号控制的理论基础、配时优化方法以及智能交通系统集成对信号控制的贡献。在实践应用方面,分