yolov5骨干代码
时间: 2023-09-17 14:08:05 浏览: 100
YOLOv5 官方权重文件
5星 · 资源好评率100%
以下是YOLOv5的骨干网络代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class CSPDarknet53(nn.Module):
def __init__(self, num_classes=1000):
super(CSPDarknet53, self).__init__()
# CSPDarknet53 architecture
self.conv1 = Conv(3, 32, kernel_size=3, stride=1)
self.conv2 = Conv(32, 64, kernel_size=3, stride=2)
self.conv3 = Bottleneck(64, 64)
self.conv4 = Conv(64, 128, kernel_size=3, stride=2)
self.conv5 = nn.Sequential(
BottleneckCSP(128, 128, n=2),
Conv(128, 256, kernel_size=3, stride=2)
)
self.conv6 = nn.Sequential(
BottleneckCSP(256, 256, n=8),
Conv(256, 512, kernel_size=3, stride=2)
)
self.conv7 = nn.Sequential(
BottleneckCSP(512, 512, n=8),
Conv(512, 1024, kernel_size=3, stride=2)
)
self.conv8 = nn.Sequential(
BottleneckCSP(1024, 1024, n=4),
Conv(1024, 2048, kernel_size=1)
)
# Classification layer
self.fc = nn.Linear(2048, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.conv6(x)
x = self.conv7(x)
x = self.conv8(x)
x = F.adaptive_avg_pool2d(x, (1, 1))
x = torch.flatten(x, 1)
x = self.fc(x)
return x
class Conv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1):
super(Conv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=kernel_size//2, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.act = nn.LeakyReLU(0.1)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
return x
class Bottleneck(nn.Module):
def __init__(self, in_channels, out_channels):
super(Bottleneck, self).__init__()
hidden_channels = out_channels // 2
self.conv1 = Conv(in_channels, hidden_channels, kernel_size=1)
self.conv2 = Conv(hidden_channels, out_channels, kernel_size=3)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
out = x + x2
return out
class BottleneckCSP(nn.Module):
def __init__(self, in_channels, out_channels, n=1):
super(BottleneckCSP, self).__init__()
hidden_channels = out_channels // 2
self.conv1 = Conv(in_channels, hidden_channels, kernel_size=1)
self.conv2 = Conv(in_channels, hidden_channels, kernel_size=1)
self.conv3 = Conv(hidden_channels, hidden_channels, kernel_size=1)
self.conv4 = Conv(hidden_channels, hidden_channels, kernel_size=1)
self.conv5 = Conv(hidden_channels * 2, out_channels, kernel_size=1)
self.convs = nn.ModuleList([self.conv2, self.conv3] * n)
self.bn = nn.BatchNorm2d(out_channels)
self.act = nn.LeakyReLU(0.1)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
for conv in self.convs:
x2 = conv(x2)
x3 = self.conv3(x1)
out = torch.cat((x2, x3), dim=1)
out = self.conv4(out)
out = self.conv5(out)
out = self.bn(out)
out = self.act(out)
return out
```
希望对你有所帮助!
阅读全文