xgboost 代码matlab
时间: 2023-08-22 18:11:11 浏览: 237
xgboost在MATLAB中的代码示例如下:
```MATLAB
% 准备数据
data = readtable('data.csv');
X = data(:,1:end-1);
y = data(:,end);
% 划分训练集和测试集
cv = cvpartition(size(X,1),'HoldOut',0.3);
idx_train = training(cv);
idx_test = test(cv);
% 定义模型参数
params.max_depth = 3;
params.eta = 0.1;
params.gamma = 1;
params.min_child_weight = 1;
params.subsample = 0.8;
params.colsample_bytree = 0.8;
% 训练模型
dtrain = xgb.DMatrix(X(idx_train,:), y(idx_train,:));
dtest = xgb.DMatrix(X(idx_test,:), y(idx_test,:));
model = xgb.train(params, dtrain, 100);
% 预测结果
y_pred = xgb.predict(model, dtest);
% 评估模型性能
rmse = sqrt(mean((y_pred - y(idx_test,:)).^2));
```
以上代码中,首先从`data.csv`文件中读取数据,并将其分为特征向量X和标签向量y。然后利用`cvpartition`函数将数据划分为训练集和测试集。接下来定义了xgboost的模型参数,包括最大树深度、学习率等。然后使用`xgb.DMatrix`将数据转换为xgboost特定的格式。接着使用`xgb.train`函数训练模型,并使用`xgb.predict`函数对测试集进行预测。最后计算模型的均方根误差(RMSE)作为模型性能的评估指标。
请注意,以上代码仅作为示例,实际使用时需要根据具体情况进行调整和修改。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [时序预测 | MATLAB实现XGBoost极限梯度提升树时间序列预测](https://blog.csdn.net/kjm13182345320/article/details/126200822)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [【机器学习】MATLAB实现XGBoost极限梯度提升树模型](https://blog.csdn.net/fanjufei123456/article/details/130714444)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [MATLAB读写excel文件历程含,内含有测试代码](https://download.csdn.net/download/li171049/88232264)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文