PR曲线和ROC曲线的区别是什么?
时间: 2024-01-14 13:20:33 浏览: 113
main_roc_python_AUC_PR曲线_ROC曲线_
5星 · 资源好评率100%
PR曲线和ROC曲线是用于评估二分类模型性能的常用工具。它们之间的区别如下:
1. 定义不同:PR曲线是以查准率(Precision)为横轴,召回率(Recall)为纵轴绘制的曲线;而ROC曲线是以假阳性率(False Positive Rate)为横轴,真阳性率(True Positive Rate)为纵轴绘制的曲线。
2. 目标不同:PR曲线关注的是模型在正类样本中的预测准确性,即模型预测为正类的样本中有多少是真正的正类;而ROC曲线关注的是模型在正类和负类样本中的预测能力,即模型能够正确预测正类和负类的能力。
3. 敏感性不同:PR曲线对正类样本的预测能力更为敏感,因此在正类样本较少或者不平衡的情况下,PR曲线更能反映模型的性能;而ROC曲线对正类和负类样本的预测能力都敏感,因此在正负类样本比例较平衡的情况下,ROC曲线更能反映模型的性能。
4. 阈值选择不同:PR曲线的每个点对应一个阈值,可以根据具体需求选择最佳阈值;而ROC曲线的每个点对应一个阈值,但并不直接提供最佳阈值的选择,需要根据具体需求进行调整。
5. 解释不同:PR曲线的面积(AUC-PR)表示模型在不同阈值下查准率和召回率之间的整体性能;而ROC曲线的面积(AUC-ROC)表示模型在不同阈值下假阳性率和真阳性率之间的整体性能。
阅读全文