ROC曲线和PR曲线是什么
时间: 2023-12-24 14:17:41 浏览: 115
基于Matlab绘制ROC和PR曲线(源码+图片).rar
5星 · 资源好评率100%
ROC 曲线和 PR 曲线都是用于评估二分类模型性能的指标,常用于机器学习领域。
ROC(Receiver Operating Characteristic)曲线是以真正率 (True Positive Rate, TPR) 为 y 轴,假正率 (False Positive Rate, FPR) 为 x 轴,绘制出的曲线。其中真正率指的是被正确预测为正类的样本数占所有实际正类样本的比例,假正率指的是被错误预测为正类的样本数占所有实际负类样本的比例。ROC 曲线的优劣通常通过曲线下面积 (Area Under Curve, AUC) 来评估,AUC 值越大,说明模型性能越好。
PR(Precision-Recall)曲线是以查准率 (Precision) 为 y 轴,召回率 (Recall) 为 x 轴,绘制出的曲线。其中查准率指的是被正确预测为正类的样本数占所有预测为正类的样本数的比例,召回率指的是被正确预测为正类的样本数占所有实际正类样本的比例。PR 曲线的优劣也通常通过曲线下面积 (Area Under Curve, AUC) 来评估,AUC 值越大,说明模型性能越好。
ROC 曲线适用于正负样本比例相对平衡的情况,而 PR 曲线更适用于正负样本比例不平衡的情况。在实际应用中,可以根据具体问题选择使用哪种曲线。
阅读全文