PR曲线和ROC曲线区别与联系
时间: 2023-09-15 14:20:27 浏览: 101
基于Python绘制PR曲线与ROC曲线(源码+图片+说明文档).rar
5星 · 资源好评率100%
PR曲线和ROC曲线都是用于评估分类模型性能的工具,但是它们的目的和应用场景不同。
PR曲线(Precision-Recall curve)用于评估二元分类模型的精确度和召回率。在PR曲线中,横轴表示召回率(recall),纵轴表示精确度(precision)。召回率指的是模型正确地识别出正例的比例,精确度指的是模型分类为正例的样本中,真正为正例的比例。PR曲线的优点是可以准确地反映出正例的比例较低时模型的分类性能。
ROC曲线(Receiver Operating Characteristic curve)用于评估二元分类模型的真阳性率和假阳性率。在ROC曲线中,横轴表示假阳性率(false positive rate),纵轴表示真阳性率(true positive rate)。假阳性率指的是被错误地分类为正例的负例样本占负例样本总数的比例,真阳性率指的是被正确地分类为正例的正例样本占正例样本总数的比例。ROC曲线的优点是可以在样本不平衡的情况下评估模型的性能。
PR曲线和ROC曲线都可以用于比较不同模型的性能,但是在应用场景和解决问题时需要根据具体情况选择合适的曲线。在正例比例较低的情况下,PR曲线更加适合评估模型的性能;在样本不平衡的情况下,ROC曲线更加适合评估模型的性能。
阅读全文