yolov8中的Bottleneck结构
时间: 2023-11-16 14:02:16 浏览: 524
yolov8中的Bottleneck结构是指在卷积神经网络中使用的一种残差块结构,它由三个卷积层组成,其中第一个卷积层的卷积核大小为1x1,第二个卷积层的卷积核大小为3x3,第三个卷积层的卷积核大小为1x1。这种结构可以有效地减少模型的参数数量和计算量,同时提高模型的准确性和泛化能力。
在yolov8中,Bottleneck结构被广泛应用于Darknet53网络中,用于提取图像特征。通过堆叠多个Bottleneck结构,可以构建出更深的卷积神经网络,从而提高模型的性能。
代码示例:
```python
import torch.nn as nn
class Bottleneck(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, expansion=4):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels * expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels * expansion)
self.relu = nn.ReLU(inplace=True)
self.stride = stride
self.expansion = expansion
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.stride != 1 or identity.shape[1] != out.shape[1]:
identity = nn.Conv2d(identity.shape[1], out.shape[1] * self.expansion, kernel_size=1, stride=self.stride, bias=False)(identity)
identity = nn.BatchNorm2d(out.shape[1] * self.expansion)(identity)
out += identity
out = self.relu(out)
return out
```
阅读全文