针对蛇形机器人,建立6个关节的结构。对蛇形机器人建立基于Hopf振荡器的模型,关节之间具有耦合性\begin{array}{l}{\left[\begin{array}{c}\dot{x}_{i} \\\dot{y}_{i}\end{array}\right]=\left[\begin{array}{cc}\alpha\left(A_{i}^{2}-r_{i}^{2}\right) & -\omega_{i} \\\omega_{i} & \alpha\left(A_{i}^{2}-r_{i}^{2}\right)\end{array}\right]\left[\begin{array}{l}x_{i} \\y_{i}\end{array}\right]} \\+\sum_{j=i \pm 1} h\left[\begin{array}{ll}\cos \left(\Delta \beta_{i j}\right) & -\sin \left(\Delta \beta_{i j}\right) \\\sin \left(\Delta \beta_{i j}\right) & \cos \left(\Delta \beta_{i j}\right)\end{array}\right]\left[\begin{array}{l}x_{j} \\y_{j}\end{array}\right] \\{\left[\begin{array}{l}x_{i} \\y_{i}\end{array}\right]=\left[\begin{array}{l}x_{i} \\y_{i}\end{array}\right]+\left[\begin{array}{l}\dot{x}_{i} \\\dot{y}_{i}\end{array}\right] \mathrm{d} t}\end{array}并给出耦合hopf的matlab完整代码
时间: 2023-07-31 16:08:16 浏览: 188
您好!下面是基于Hopf振荡器的蛇形机器人的耦合模型的MATLAB代码示例:
```matlab
% 参数设置
alpha = 1; % 振荡器参数
A = 2; % 振幅
omega = 1; % 角速度
h = 0.5; % 耦合强度
% 初始化关节位置和速度
num_joints = 6;
x = zeros(num_joints, 1);
y = zeros(num_joints, 1);
dx = zeros(num_joints, 1);
dy = zeros(num_joints, 1);
% 模拟时间和步长
t_start = 0;
t_end = 10;
dt = 0.01;
tspan = t_start:dt:t_end;
% 模拟耦合振荡器动力学
for t = tspan
for i = 1:num_joints
% 计算耦合项
sum_x = 0;
sum_y = 0;
for j = [i+1, i-1]
if j > 0 && j <= num_joints
delta_beta = atan2(y(j) - y(i), x(j) - x(i));
sum_x = sum_x + cos(delta_beta);
sum_y = sum_y + sin(delta_beta);
end
end
% 计算关节运动方程
dx(i) = alpha * (A^2 - x(i)^2 - y(i)^2) * x(i) - omega * y(i) + h * sum_x;
dy(i) = alpha * (A^2 - x(i)^2 - y(i)^2) * y(i) + omega * x(i) + h * sum_y;
% 更新关节位置
x(i) = x(i) + dx(i) * dt;
y(i) = y(i) + dy(i) * dt;
end
end
% 绘制关节位置随时间的变化
figure;
hold on;
for i = 1:num_joints
plot(tspan, x(i, :));
plot(tspan, y(i, :));
end
xlabel('时间');
ylabel('位置');
legend('x1', 'y1', 'x2', 'y2', 'x3', 'y3', 'x4', 'y4', 'x5', 'y5', 'x6', 'y6');
```
请注意,这只是一个简单的示例代码,具体的参数设置和绘图方式可以根据您的需求进行调整。希望对您有所帮助!
阅读全文