from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler from imblearn.pipeline import Pipeline from sklearn.model_selection import cross_val_score # 定义管道 #欠采样和过采样的结合(使用pipeline) model = SVC() over = SMOTE(sampling_strategy=0.4) under = RandomUnderSampler(sampling_strategy=0.5) steps = [('o', over), ('u', under), ('model', model)] pipeline = Pipeline(steps=steps) # 评估效果 scores = cross_val_score(pipeline, X, y, scoring='roc_auc', cv=5, n_jobs=-1) score = np.mean(scores) print('ROC AUC score for the combined sampling method: %.3f' % score)该如何求该模型的accuracy,AUC ,precision,recall,f1 score ,Sensitivity ,Specificity 还要画出ROC曲线和混淆矩阵
时间: 2024-04-13 12:25:27 浏览: 290
要求该模型的accuracy,AUC,precision,recall,f1 score,Sensitivity,Specificity以及绘制ROC曲线和混淆矩阵,可以按照以下步骤进行:
1. 导入需要的库:
```python
import numpy as np
from sklearn.metrics import accuracy_score, roc_auc_score, precision_score, recall_score, f1_score, confusion_matrix, roc_curve
import matplotlib.pyplot as plt
```
2. 训练模型和预测结果:
```python
model.fit(X, y)
y_pred = model.predict(X)
```
3. 计算指标:
```python
accuracy = accuracy_score(y, y_pred)
auc = roc_auc_score(y, y_pred)
precision = precision_score(y, y_pred)
recall = recall_score(y, y_pred)
f1 = f1_score(y, y_pred)
```
4. 计算混淆矩阵:
```python
cm = confusion_matrix(y, y_pred)
```
5. 计算Sensitivity和Specificity:
```python
sensitivity = cm[1, 1] / (cm[1, 0] + cm[1, 1])
specificity = cm[0, 0] / (cm[0, 0] + cm[0, 1])
```
6. 绘制ROC曲线:
```python
fpr, tpr, thresholds = roc_curve(y, y_pred)
plt.plot(fpr, tpr)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.show()
```
请注意,上述代码中的`y`是真实标签值,`y_pred`是模型的预测结果。另外,混淆矩阵中的`cm[0, 0]`表示真实类别为负样本且被正确预测为负样本的数量,`cm[0, 1]`表示真实类别为负样本但被错误预测为正样本的数量,`cm[1, 0]`表示真实类别为正样本但被错误预测为负样本的数量,`cm[1, 1]`表示真实类别为正样本且被正确预测为正样本的数量。
以上是求解指标和绘制ROC曲线和混淆矩阵的基本步骤,你可以根据需要进一步调整和优化。
阅读全文