用c++代码写出用欧几里得算法求两个数的最大公约数并且计算辗转相除的次数
时间: 2024-09-13 10:02:25 浏览: 48
算法_用欧几里得算法求最大公因数_
5星 · 资源好评率100%
欧几里得算法(也称为辗转相除法)用于计算两个正整数a和b的最大公约数(GCD)。以下是使用C++编写的一个简单版本的代码,包括计算辗转相除的次数:
```cpp
#include <iostream>
// 函数声明,计算最大公约数并返回次数
int gcd(int a, int b, int& count);
int main() {
int num1, num2;
std::cout << "请输入两个正整数:";
std::cin >> num1 >> num2;
// 计算最大公约数
int result = gcd(num1, num2, num1); // 最大公约数作为第三个参数传递,实际结果存储在num1上
std::cout << "两数的最大公约数是:" << result << std::endl;
std::cout << "辗转相除的次数是:" << (num1 == result ? 0 : 1 + gcd(num1, result, 0)) << std::endl; // 如果num1已经更新为gcd,说明之前的计数是多余的
return 0;
}
// 欧几里得算法的具体实现
int gcd(int a, int b, int& count) {
if (b == 0) { // base case: b为0,那么a就是最大公约数
count++;
return a;
} else {
count++; // 每次递归都增加计数
return gcd(b, a % b, count); // 递归调用,a取模b
}
}
```
在这个代码中,`gcd`函数通过递归实现了欧几里得算法,并在每次迭代中更新最大公约数。同时,它记录了辗转相除的次数,在main函数中返回这个值。注意,这里的最大公约数会直接替换掉第一个传入的数`num1`,所以在最后需要额外检查一次`num1`是否等于结果,如果是,则之前的计数无需考虑。
阅读全文