无迹卡尔曼滤波ukf代码
时间: 2024-04-18 13:22:10 浏览: 115
无迹卡尔曼滤波(Unscented Kalman Filter,UKF)是一种非线性滤波算法,用于估计系统状态。相比于传统的扩展卡尔曼滤波(Extended Kalman Filter,EKF),UKF使用迹变换来更准确地估计线性系统的。
以下是一个简单的无迹卡尔曼滤波的代码示例:
```python
import numpy as np
def unscentedalman_filter(x, P, z, Q R, f, h):
n = len)
m = len(z)
alpha = 0.001
kappa = 0
beta = 2
lambda_ = alpha**2 * (n + kappa) - n
c = n + lambda_
Generate sigma points
sigma_points = np.zeros((n, 2*n+1))
sigma_points[:, 0] = x
sqrt_P = np.linalg.cholesky(c*P)
for i in range(n):
sigma_points[:, i+1] = x + sqrt_P[:, i]
sigma_points[:, n+i+1] = x - sqrt_P[:, i]
# Propagate sigma points through the nonlinear process model
propagated_points = np.zeros((n, 2*n+1))
for i in range(2*n+1):
propagated_points[:, i] = f(sigma_points[:, i])
# Calculate predicted state and covariance
x_pred = np.sum(propagated_points, axis=1) / (2*n+1)
P_pred = np.zeros((n, n))
for i in range(2*n+1):
P_pred += ((propagated_points[:, i] - x_pred) @ (propagated_points[:, i] - x_pred).T) / (2*n+1)
P_pred += Q
# Calculate predicted measurement and covariance
z_pred = np.zeros((m, 1))
for i in range(2*n+1):
z_pred += h(propagated_points[:, i])
z_pred /= (2*n+1)
Pzz = np.zeros((m, m))
Pxz = np.zeros((n, m))
for i in range(2*n+1):
Pzz += ((h(propagated_points[:, i]) - z_pred) @ (h(propagated_points[:, i]) - z_pred).T) / (2*n+1)
Pxz += ((propagated_points[:, i] - x_pred) @ (h(propagated_points[:, i]) - z_pred).T) / (2*n+1)
Pzz += R
# Calculate Kalman gain
K = Pxz @ np.linalg.inv(Pzz)
# Update state and covariance
x = x_pred + K @ (z - z_pred)
P = P_pred - K @ Pzz @ K.T
return x, P
```
在上述代码中,`x`是系统状态向量,`P`是状态协方差矩阵,`z`是测量向量,`Q`是过程噪声协方差矩阵,`R`是测量噪声协方差矩阵,`f`是非线性过程模型函数,`h`是非线性测量模型函数。函数`unscented_kalman_filter`实现了无迹卡尔曼滤波的主要逻辑,通过传入相应的参数进行状态估计。
阅读全文