多头注意力机制和自注意力机制有什么区别?
时间: 2023-12-10 18:35:13 浏览: 101
使用多头注意力机制实现数字预测
5星 · 资源好评率100%
多头注意力机制和自注意力机制都是注意力机制的变种,它们的区别在于注意力的计算方式和应用场景不同。
自注意力机制是指在一个序列中,每个元素都可以和其他元素计算注意力得分,然后根据得分对所有元素进行加权求和,得到每个元素的表示。自注意力机制常用于序列到序列的任务中,如机器翻译、文本摘要等。
多头注意力机制则是将自注意力机制中的注意力计算分为多个头,每个头都可以学习到不同的注意力权重,然后将多个头的注意力结果拼接起来,再通过一个线性变换得到最终的表示。多头注意力机制可以更好地捕捉序列中的不同特征,提高模型的表现。多头注意力机制常用于语言模型、文本分类等任务中。
另外,自注意力机制和多头注意力机制都需要使用位置编码来保留序列中元素的位置信息,以便模型能够更好地理解序列中元素的顺序。
阅读全文