多头注意力机制和自注意力机制的代表是什么
时间: 2024-03-22 17:36:10 浏览: 98
使用多头注意力机制实现数字预测
5星 · 资源好评率100%
多头注意力机制和自注意力机制是自然语言处理中常用的注意力机制。其中,自注意力机制的代表是Transformer模型,而多头注意力机制是Transformer模型中的一种变体。
Transformer模型是一种基于自注意力机制的神经网络模型,它在机器翻译、文本生成等任务中取得了很好的效果。自注意力机制通过计算输入序列中每个位置与其他位置的相关性,从而为每个位置分配一个权重,用于对输入序列进行加权求和。这样可以捕捉到输入序列中不同位置之间的依赖关系。
多头注意力机制是Transformer模型中的一种改进,它通过同时使用多个注意力头来捕捉不同的语义信息。每个注意力头都会学习到不同的相关性权重,从而使模型能够更好地理解输入序列中的不同方面。多头注意力机制可以提高模型的表达能力和泛化能力,进而提升模型在各种自然语言处理任务中的性能。
阅读全文