cv2.Laplacian(img2gray,cv2.CV_64F).var
时间: 2024-03-01 16:47:04 浏览: 191
`cv2.Laplacian(img2gray, cv2.CV_64F).var()`是用于计算图像灰度图的Laplacian算子的方差。Laplacian算子是一种常用的图像边缘检测算法,它可以通过计算图像中像素值的二阶导数来检测图像中的边缘。
在这个代码中,`img2gray`是输入的灰度图像,`cv2.CV_64F`是Laplacian算子的数据类型。函数`cv2.Laplacian()`会对输入图像应用Laplacian算子,并返回一个新的图像。然后,`.var()`方法会计算这个新图像的方差,并将结果返回给变量`imageVar`。
方差是用来衡量数据分布的离散程度的统计量,对于图像来说,方差可以用来评估图像的清晰度。如果图像边缘变化明显,方差会比较大;如果图像边缘变化不明显,方差会比较小。
范例中的代码是计算了名为`lena.jpg`的图像的Laplacian算子方差,并将结果存储在变量`imageVar`中。你可以通过调用`getImageVar()`函数来获取这个方差值。
相关问题
用python实现基于概率分布的超声图像与自然图像性质差异分析这一课题,不用greycomatrix和greycoprops,使用opencv,不用两种图像的文件类型都是jpg,超声图像的文件路径是‘D:/zzz/us2’,自然图像的文件路径是‘D:/zzz/na2’,两种图像都有84张,图片形状都不同,图像名称是随机的,需要对比两种图像的特征必须有颜色,纹理,形状,差异性分析方法也需要多种,包括完整详细代码
实现基于概率分布的超声图像与自然图像性质差异分析可以采用以下步骤:
1. 导入必要的库
```
import cv2
import numpy as np
import os
from scipy.stats import multivariate_normal
```
2. 读取图像并转换为HSV颜色空间
```
def read_images(path):
images = []
for file in os.listdir(path):
if file.endswith(".jpg"):
img = cv2.imread(os.path.join(path, file))
img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
images.append(img)
return images
us_images = read_images("D:/zzz/us2")
na_images = read_images("D:/zzz/na2")
```
3. 计算颜色分布
```
def calculate_color_distribution(images):
hue_hist = np.zeros(180)
sat_hist = np.zeros(256)
val_hist = np.zeros(256)
for img in images:
h, s, v = cv2.split(img)
hue_hist += np.histogram(h, bins=180, range=(0, 180))[0]
sat_hist += np.histogram(s, bins=256, range=(0, 256))[0]
val_hist += np.histogram(v, bins=256, range=(0, 256))[0]
hue_hist /= np.sum(hue_hist)
sat_hist /= np.sum(sat_hist)
val_hist /= np.sum(val_hist)
return hue_hist, sat_hist, val_hist
us_hue_hist, us_sat_hist, us_val_hist = calculate_color_distribution(us_images)
na_hue_hist, na_sat_hist, na_val_hist = calculate_color_distribution(na_images)
```
4. 计算纹理分布
```
def calculate_texture_distribution(images):
texture_hist = np.zeros(256)
for img in images:
gray = cv2.cvtColor(img, cv2.COLOR_HSV2GRAY)
texture = cv2.Laplacian(gray, cv2.CV_64F).var()
texture_hist += np.histogram(texture, bins=256, range=(0, 256))[0]
texture_hist /= np.sum(texture_hist)
return texture_hist
us_texture_hist = calculate_texture_distribution(us_images)
na_texture_hist = calculate_texture_distribution(na_images)
```
5. 计算形状分布
```
def calculate_shape_distribution(images):
shape_hist = np.zeros(256)
for img in images:
contours, _ = cv2.findContours(cv2.Canny(img, 100, 200), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
area = cv2.contourArea(contours[0])
shape_hist += np.histogram(area, bins=256, range=(0, 256))[0]
shape_hist /= np.sum(shape_hist)
return shape_hist
us_shape_hist = calculate_shape_distribution(us_images)
na_shape_hist = calculate_shape_distribution(na_images)
```
6. 计算差异性
```
def calculate_difference(hist1, hist2):
return np.sum(np.abs(hist1 - hist2))
color_diff = calculate_difference(us_hue_hist, na_hue_hist) + \
calculate_difference(us_sat_hist, na_sat_hist) + \
calculate_difference(us_val_hist, na_val_hist)
texture_diff = calculate_difference(us_texture_hist, na_texture_hist)
shape_diff = calculate_difference(us_shape_hist, na_shape_hist)
total_diff = color_diff + texture_diff + shape_diff
print("Color difference: ", color_diff)
print("Texture difference: ", texture_diff)
print("Shape difference: ", shape_diff)
print("Total difference: ", total_diff)
```
完整代码如下:
```
import cv2
import numpy as np
import os
from scipy.stats import multivariate_normal
def read_images(path):
images = []
for file in os.listdir(path):
if file.endswith(".jpg"):
img = cv2.imread(os.path.join(path, file))
img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
images.append(img)
return images
def calculate_color_distribution(images):
hue_hist = np.zeros(180)
sat_hist = np.zeros(256)
val_hist = np.zeros(256)
for img in images:
h, s, v = cv2.split(img)
hue_hist += np.histogram(h, bins=180, range=(0, 180))[0]
sat_hist += np.histogram(s, bins=256, range=(0, 256))[0]
val_hist += np.histogram(v, bins=256, range=(0, 256))[0]
hue_hist /= np.sum(hue_hist)
sat_hist /= np.sum(sat_hist)
val_hist /= np.sum(val_hist)
return hue_hist, sat_hist, val_hist
def calculate_texture_distribution(images):
texture_hist = np.zeros(256)
for img in images:
gray = cv2.cvtColor(img, cv2.COLOR_HSV2GRAY)
texture = cv2.Laplacian(gray, cv2.CV_64F).var()
texture_hist += np.histogram(texture, bins=256, range=(0, 256))[0]
texture_hist /= np.sum(texture_hist)
return texture_hist
def calculate_shape_distribution(images):
shape_hist = np.zeros(256)
for img in images:
contours, _ = cv2.findContours(cv2.Canny(img, 100, 200), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
area = cv2.contourArea(contours[0])
shape_hist += np.histogram(area, bins=256, range=(0, 256))[0]
shape_hist /= np.sum(shape_hist)
return shape_hist
def calculate_difference(hist1, hist2):
return np.sum(np.abs(hist1 - hist2))
us_images = read_images("D:/zzz/us2")
na_images = read_images("D:/zzz/na2")
us_hue_hist, us_sat_hist, us_val_hist = calculate_color_distribution(us_images)
na_hue_hist, na_sat_hist, na_val_hist = calculate_color_distribution(na_images)
us_texture_hist = calculate_texture_distribution(us_images)
na_texture_hist = calculate_texture_distribution(na_images)
us_shape_hist = calculate_shape_distribution(us_images)
na_shape_hist = calculate_shape_distribution(na_images)
color_diff = calculate_difference(us_hue_hist, na_hue_hist) + \
calculate_difference(us_sat_hist, na_sat_hist) + \
calculate_difference(us_val_hist, na_val_hist)
texture_diff = calculate_difference(us_texture_hist, na_texture_hist)
shape_diff = calculate_difference(us_shape_hist, na_shape_hist)
total_diff = color_diff + texture_diff + shape_diff
print("Color difference: ", color_diff)
print("Texture difference: ", texture_diff)
print("Shape difference: ", shape_diff)
print("Total difference: ", total_diff)
```
计算彩色图像的SMD2,Python
可以使用OpenCV库中的函数来计算彩色图像的SMD2。具体实现如下:
```python
import cv2
# 加载彩色图像
img = cv2.imread('image.jpg')
# 将彩色图像转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 计算SMD2
smd2 = cv2.Laplacian(gray, cv2.CV_64F).var()
# 输出结果
print('SMD2:', smd2)
```
其中,cv2.Laplacian()函数用于对灰度图像进行拉普拉斯边缘检测,cv2.CV_64F表示输出数据类型为64位浮点数,而var()函数用于计算图像像素值的方差,即SMD2的值。
阅读全文