为以下代码添加注释class NeuralNetwork(nn.Module): def __init__(self): super().__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( # 建立多层神经网络 nn.Linear(28*28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10) ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits model = NeuralNetwork().to(device) print(model)
时间: 2023-07-14 18:11:52 浏览: 266
加注释的神经网络模型
# 定义一个神经网络类
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__() # 调用父类的构造函数
self.flatten = nn.Flatten() # 将输入的二维图像数据展平为一维数据
self.linear_relu_stack = nn.Sequential( # 定义一个多层神经网络,包含三个全连接层和两个ReLU激活函数
nn.Linear(28*28, 512), # 第一层全连接层,输入维度为28*28,输出维度为512
nn.ReLU(), # 第一个ReLU激活函数
nn.Linear(512, 512), # 第二层全连接层,输入维度为512,输出维度为512
nn.ReLU(), # 第二个ReLU激活函数
nn.Linear(512, 10) # 最后一层全连接层,输入维度为512,输出维度为10(对应10个分类)
)
# 定义前向传播函数
def forward(self, x):
x = self.flatten(x) # 将输入数据展平为一维数据
logits = self.linear_relu_stack(x) # 输入数据通过多层神经网络,得到输出结果
return logits
# 创建一个神经网络实例,并将其移动到指定设备上(如果有GPU,则移动到GPU上)
model = NeuralNetwork().to(device)
# 打印神经网络结构
print(model)
阅读全文