i = P1 >> 4 ^ 0x0f;

时间: 2024-05-18 17:17:43 浏览: 10
这行代码将P1口的高4位右移4位,得到按键状态的低4位,再与0x0f异或,得到按键状态的补码,即按键为1则对应的位变为0,按键为0则对应的位变为1。这样做是因为矩阵按键的列连接P1的高4位,行连接P1的低4位,将高4位右移4位可以将按键状态的高4位移到低4位,方便后面的switch语句判断哪个按键被按下。
相关问题

修改下述程序,实现用定时器0定时,使得LED灯每1ms闪烁一次:// // INT0---P3.2 ---connect to a button // when the button is pressed, the LED changes between fast blink and slow blink // ------CH 2021.7.29 //************************************************************* #include "STC32G.h" #include "stdio.h" #include "intrins.h" typedef unsigned char u8; typedef unsigned int u16; typedef unsigned long u32; #define MAIN_Fosc 24000000UL //========================================================================== // sbit INT1 = P3^3; bit flag=0; // /************* function declaration **************/ void delay_ms(u8 ms); /******************** Main function**************************/ void main(void) { u8 i; WTST = 0; P0M1 = 0x00; P0M0 = 0x00; //IO set up P1M1 = 0x00; P1M0 = 0x00; P2M1 = 0x00; P2M0 = 0x00; P3M1 = 0x0f; P3M0 = 0x00; P4M1 = 0xff; P4M0 = 0x00; P5M1 = 0x00; P5M0 = 0x00; P6M1 = 0x00; P6M0 = 0x00; P7M1 = 0x00; P7M0 = 0x00; EX0 = 1; //interrupt enable EA = 1; //all interrupt enable IT0=1; // edge trigger while(1) { if(flag==0) { i=1000; } else {i=10; } P2=0xff; delay_ms(i); P2=0x00; delay_ms(i); } } //======================================================================== void delay_ms(u8 ms) { u16 i; do{ i = MAIN_Fosc / 6000; while(--i); }while(--ms); } /********************* INT0*************************/ void INT0_int (void) interrupt 0 { flag=~flag; }

下面是修改后的程序,使用定时器0实现LED每1ms闪烁一次: ```c #include "STC32G.h" #include "stdio.h" #include "intrins.h" typedef unsigned char u8; typedef unsigned int u16; typedef unsigned long u32; #define MAIN_Fosc 24000000UL bit flag = 0; void delay_ms(u8 ms); void main(void) { u8 i; WTST = 0; P0M1 = 0x00; P0M0 = 0x00; P1M1 = 0x00; P1M0 = 0x00; P2M1 = 0x00; P2M0 = 0x00; P3M1 = 0x0f; P3M0 = 0x00; P4M1 = 0xff; P4M0 = 0x00; P5M1 = 0x00; P5M0 = 0x00; P6M1 = 0x00; P6M0 = 0x00; P7M1 = 0x00; P7M0 = 0x00; EX0 = 1; EA = 1; IT0 = 1; TMOD |= 0x01; // 设置定时器计数模式为模式1 TH0 = (65536 - (MAIN_Fosc / 1000)) / 256; // 设置定时器初值 TL0 = (65536 - (MAIN_Fosc / 1000)) % 256; TR0 = 1; // 启动定时器 while (1) { if (flag == 0) { i = 1000; } else { i = 10; } P2 = 0xff; delay_ms(i); P2 = 0x00; delay_ms(i); } } void delay_ms(u8 ms) { u16 i; do { i = MAIN_Fosc / 6000; while (--i) ; } while (--ms); } void INT0_int(void) interrupt 0 { flag = ~flag; } ``` 这个修改后的程序使用了定时器0来实现延时,每1ms触发一次中断,控制LED的闪烁。请确保定时器计数频率正确设置,并且定时器的中断向量正确配置为中断0。

代码解释#include <reg51.h> #define uchar unsigned char #define uint unsigned int // c0de for 7Seg MPX CA, from 0 to 9 and A to F and - // if want to use in CC, add ~ uchar code numberDisplayTable[] = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90, 0x88, 0x83, 0xc6, 0xa1, 0x86, 0x8e, 0xbf}; // delay time for notes uint code noteDelayTime[] = {64021, 64103, 64260, 64400, 64524, 64580, 64684, 64777, 64820, 64898, 64968, 65030, 65058, 65110, 65157, 65178}; sbit BEEP = P3 ^ 0; uchar keyNumber; void delay(uchar x) { uchar i; while (x--) for(i = 0; i < 120; i++); } void scanKey() { uchar tmp, k; P1 = 0x0f; delay(2); tmp = P1 ^ 0x0f; switch (tmp) { case 1: k = 0; break; case 2: k = 1; break; case 4: k = 2; break; case 8: k = 3; break; default:// no key down? return; } // set low 4 bits to 0, so place in 4 rows P1 = 0xf0; delay(2); // after button push, 11110000 will turned into XXXX0000, 1 0 in X, 3 1 in X // so we extract the 0 out tmp = (P1 >> 4) ^ 0x0f; // set 0,4,8,12 for row 0 ~ 3 switch (tmp) { case 1: k += 0; break; case 2: k += 4; break; case 4: k += 8; break; case 8: k += 12; break; default: return; } keyNumber = k; } // play sound via int0 void playNote() interrupt 1 { TH0 = noteDelayTime[keyNumber] / 256; TL0 = noteDelayTime[keyNumber] % 256; BEEP = ~BEEP; } void main() { // display - at start P0 = 0xbf; TMOD = 0x01; IE = 0x82; while (1) { // send scanner P1 = 0xf0; // if button down if (P1 != 0xf0) { scanKey(); P0 = ~numberDisplayTable[keyNumber]; // enable timer TR0 = 1; } else { // stop timer TR0 = 0; } delay(2); } }

这是一段8051单片机的程序代码,主要实现了一个数字键盘的输入和对应的数字音符的播放功能。具体来说,代码中使用了一个数字表来表示0~9和A~F以及“-”这些数字在数码管上的显示方式(使用了共阴极的7段数码管),同时也定义了一个数组来表示每个音符需要延时的时间。在主函数中,程序通过扫描数字键盘的输入来获取用户按下的键号,并根据键号找到对应的音符延时时间,然后通过定时器来实现音符的播放。同时,程序也根据键号将对应的数字在数码管上进行显示。整个程序的逻辑比较清晰,主要是通过数字表和延时时间表来实现功能。

相关推荐

//SHA1.c #include <stdio.h> #include <string.h> #include <Windows.h> void creat_w( char input[64],unsigned long w[80]){ int i,j; unsigned long temp,temp1; for(i=0;i<16;i++){ j=4*i; w[i]=((long)input[j])<<24 |((long)input[1+j])<<16|((long)input[2+j])<<8|((long)input[3+j])<<0; } for(i=16;i<80;i++){ w[i]=w[i-16]^w[i-14]^w[i-8]^w[i-3]; temp=w[i]<<1; temp1=w[i]>>31; w[i]=temp|temp1; } } void ms_len(long a,char intput[64]){ unsigned long temp3,p1; int i,j; temp3=0; p1=~(~temp3<<8); for(i=0;i<4;i++){ j=8*i; intput[63-i]=(char)((a&(p1<<j))>>j); } } int main(){ unsigned long H0=0x67452301,H1=0xefcdab89,H2=0x98badcfe,H3=0x10325476,H4=0xc3d2e1f0; unsigned long A,B,C,D,E,temp,temp1,temp2,temp3,k,f; int i,flag; unsigned long w[80]; char input[64]; long x;int n; printf("输入明文:"); scanf("%s",input); n=strlen(input); if(n<57){ x=n*8; ms_len(x,input); if(n==56){ for(i=n;i<60;i++) input[i]=0; } else{ input[n]=128; for(i=n+1;i<60;i++) input[i]=0; } } creat_w(input,w); /*for(i=0;i<80;i++) printf("%lx,",w[i]);*/ printf("\n"); A=H0;B=H1;C=H2;D=H3;E=H4; for(i=1;i < 80;i++){ flag=i/20; switch(flag){ case 0: k=0x5a827999;f=(B&C)|(~B&D);break; case 1: k=0x6ed9eba1;f=B^C^D;break; case 2: k=0x8f1bbcdc;f=(B&C)|(B&D)|(C&D);break; case 3: k=0xca62c1d6;f=B^C^D;break; } /*printf("%lx,%lx\n",k,f); */ temp1=A<<5; temp2=A>>27; temp3=temp1|temp2; temp=temp3+f+E+w[i]+k; E=D; D=C; temp1=B<<30; temp2=B>>2; C=temp1|temp2; B=A; A=temp; printf("第%d步:",i+1); printf("A = %lx,B = %lx,C = %lx,D = %lx,E = %lx\n",A,B,C,D,E); } H0=H0+A; H1=H1+B; H2=H2+C; H3=H3+D; H4=H4+E; printf("\n哈希值:\n"); printf("%lx%lx%lx%lx%lx\n",H0,H1,H2,H3,H4); system("pause"); }写出这段代码每一行的意思

#include <reg52.h> sbit DS1302_CE = P1^7; sbit DS1302_CK = P3^5; sbit DS1302_IO = P3^4; bit flag200ms = 0; //200ms定时标志 unsigned char T0RH = 0; //T0重载值的高字节 unsigned char T0RL = 0; //T0重载值的低字节 void ConfigTimer0(unsigned int ms); void InitDS1302(); unsigned char DS1302SingleRead(unsigned char reg); extern void InitLcd1602(); extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str); void main() { unsigned char i; unsigned char psec=0xAA; //秒备份,初值AA确保首次读取时间后会刷新显示 unsigned char time[8]; //当前时间数组 unsigned char str[12]; //字符串转换缓冲区 EA = 1; //开总中断 ConfigTimer0(1); //T0定时1ms InitDS1302(); //初始化实时时钟 InitLcd1602(); //初始化液晶 while (1) { if(flag200ms) { flag200ms = 0; for(i=0; i<7; i++) { time[i] = DS1302SingleRead(i); } if(psec != time[0]) { str[0] = '2'; str[1] = '0'; str[2] = (time[6] >> 4) + '0'; str[3] = (time[6] & 0x0F) + '0'; str[4] = '-'; str[5] = (time[4] >> 4) + '0'; str[6] = (time[4] & 0x0F) + '0'; str[7] = '-'; str[8] = (time[3] >> 4) + '0'; str[9] = (time[3] & 0x0F) + '0'; str[10] = '\0'; LcdShowStr(0, 0, str); str[0] = (time[5] & 0x0F) + '0'; str[1] = '\0'; LcdShowStr(11, 0, "week"); LcdShowStr(15, 0, str); str[0] = (time[2] >> 4) + '0'; str[1] = (time[2] & 0x0F) + '0'; str[2] = ':'; str[3] = (time[1] >> 4) + '0'; str[4] = (time[1] & 0x0F) + '0'; str[5] = ':'; str[6] = (time[0] >> 4) + '0'; str[7] = (time[0] & 0x0F) + '0'; str[8] = '\0'; LcdShowStr(4, 1, str); psec = time[0]; } } } } void DS1302ByteWrite(unsigned char dat) { unsigned char mask; for(mask=0x01; mask!=0; mask<<=1) { if((mask&dat) != 0) DS1302_IO = 1; else DS1302_IO = 0; DS1302_CK = 1; DS1302_CK = 0; } } unsigned char DS1302ByteRead() { unsigned char dat = 0; unsigned char mask; for(mask=0x01; mask!=0; mask<<=1) { if(DS1302_I

最新推荐

recommend-type

DataFrame iloc练习.ipynb

DataFrame iloc练习.ipynb
recommend-type

水箱加热系统的PLC温度控制课程设计.doc

plc
recommend-type

制造企业数字化中台(技术中台、数据中台、业务中台)建设方案.pptx

制造企业数字化中台(技术中台、数据中台、业务中台)建设方案.pptx
recommend-type

共轴极紫外投影光刻物镜设计研究

"音视频-编解码-共轴极紫外投影光刻物镜设计研究.pdf" 这篇博士学位论文详细探讨了共轴极紫外投影光刻物镜的设计研究,这是音视频领域的一个细分方向,与信息技术中的高级光学工程密切相关。作者刘飞在导师李艳秋教授的指导下,对这一前沿技术进行了深入研究,旨在为我国半导体制造设备的发展提供关键技术支持。 极紫外(EUV)光刻技术是当前微电子制造业中的热点,被视为下一代主流的光刻技术。这种技术的关键在于其投影曝光系统,特别是投影物镜和照明系统的设计。论文中,作者提出了创新的初始结构设计方法,这为构建高性能的EUV光刻投影物镜奠定了基础。非球面结构的成像系统优化是另一个核心议题,通过这种方法,可以提高光刻系统的分辨率和成像质量,达到接近衍射极限的效果。 此外,论文还详细阐述了极紫外光刻照明系统的初始建模和优化策略。照明系统的优化对于确保光刻过程的精确性和一致性至关重要,能够减少缺陷,提高晶圆上的图案质量。作者使用建立的模型和优化算法,设计出多套EUV光刻机的成像系统,并且经过优化后的系统展现出优秀的分辨率和成像性能。 最后,作者在论文中做出了研究成果声明,保证了所有内容的原创性,并同意北京理工大学根据相关规定使用和分享学位论文。这表明,该研究不仅代表了个人的学术成就,也符合学术界的伦理规范,有助于推动相关领域的知识传播和进步。 这篇论文深入研究了共轴极紫外投影光刻物镜的设计,对于提升我国半导体制造技术,尤其是光刻技术的自主研发能力具有重大意义。其内容涵盖的非球面成像系统优化、EUV照明系统建模与优化等,都是目前微电子制造领域亟待解决的关键问题。这些研究成果不仅为实际的光刻设备开发提供了理论基础,也为未来的科研工作提供了新的思路和方法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

泊松分布:离散分布中的典型代表,探索泊松分布的应用场景

![泊松分布:离散分布中的典型代表,探索泊松分布的应用场景](https://img-blog.csdnimg.cn/20190802094932661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ltaHVh,size_16,color_FFFFFF,t_70) # 1. 泊松分布的理论基础 泊松分布是一种离散概率分布,用于描述在固定时间或空间间隔内发生的随机事件的数量。它以法国数学家西梅翁·德尼·泊松(Siméon Denis
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

基于GIS的通信管线管理系统构建与音视频编解码技术应用

音视频编解码在基于GIS的通信管线管理系统中的应用 音视频编解码技术在当前的通信技术中扮演着非常重要的角色,特别是在基于GIS的通信管线管理系统中。随着通信技术的快速发展和中国移动通信资源的建设范围不断扩大,管线资源已经成为电信运营商资源的核心之一。 在当前的通信业务中,管线资源是不可或缺的一部分,因为现有的通信业务都是建立在管线资源之上的。随着移动、电信和联通三大运营商之间的竞争日益激烈,如何高效地掌握和利用管线资源已经成为运营商的一致认识。然而,大多数的资源运营商都将资源反映在图纸和电子文件中,管理非常耗时。同时,搜索也非常不方便,当遇到大规模的通信事故时,无法找到相应的图纸,浪费了大量的时间,给运营商造成了巨大的损失。 此外,一些国家的管线资源系统也存在许多问题,如查询基本数据非常困难,新项目的建设和迁移非常困难。因此,建立一个基于GIS的通信管线管理系统变得非常必要。该系统可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。 在基于GIS的通信管线管理系统中,音视频编解码技术可以发挥重要作用。通过音视频编解码技术,可以将管线资源的信息实时地捕捉和处理,从而实现管线资源的实时监控和管理。同时,音视频编解码技术也可以用于事故处理中,对管线资源进行实时监控和分析,以便快速确定事故原因和位置,减少事故处理时间。 此外,基于GIS的通信管线管理系统还可以实现管线资源的空间分析和可视化,通过音视频编解码技术,可以将管线资源的信息转换为实时的视频图像,从而实现管线资源的实时监控和管理。同时,该系统还可以实现管线资源的智能分析和预测,对管线资源的使用和维护进行科学的分析和预测,从而提高管线资源的使用效率和可靠性。 音视频编解码技术在基于GIS的通信管线管理系统中扮演着非常重要的角色,可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

二项分布:离散分布中的关键案例,理解二项分布的应用

![二项分布:离散分布中的关键案例,理解二项分布的应用](https://img-blog.csdnimg.cn/20201206104644803.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDQ0MTEzMQ==,size_16,color_FFFFFF,t_70) # 1. 二项分布的基本概念 二项分布是一种离散概率分布,用于描述在固定次数的独立试验中成功事件发生的次数。它广泛应用于各种领域,包括质量控