m = size(X, 1); num_labels = size(Theta2, 1); p = zeros(size(X, 1), 1); h1 = sigmoid([ones(m, 1) X] * Theta1'); h2 = sigmoid([ones(m, 1) h1] * Theta2'); [dummy, p] = max(h2, [], 2);
时间: 2023-09-28 07:11:05 浏览: 68
这是一段MATLAB代码,它实现了一个神经网络的预测过程,其中Theta1和Theta2分别表示神经网络的第一层和第二层的权重矩阵,X是包含输入样本的矩阵。具体来说,该代码中的m和num_labels分别表示输入样本的数量和神经网络输出层的神经元数量,p是一个向量,用于存储最终的预测结果。在代码中,首先通过sigmoid函数计算了神经网络第一层和第二层的输出值,其中h1和h2分别表示第一层和第二层的输出。在计算h1和h2时,使用了[ones(m, 1) X]和[ones(m, 1) h1]对输入数据进行扩展,以便将偏差项也考虑在内。接下来,通过max函数获取h2矩阵中每一行的最大值及其索引,将索引存储在p向量中。最终,p向量就是神经网络对输入数据的预测结果。需要注意的是,该代码中的sigmoid函数用于对矩阵进行逐元素的sigmoid运算,以得到神经元的输出值。
相关问题
in_features = train_features.shape[1] def train(model, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] theta = np.zeros((in_features, 1)) best_theta = np.zeros((in_features, 1)) best_loss = np.inf for epoch in range(num_epochs): train_iter = data_iter(batch_size, train_features, train_labels) for X, y in train_iter: theta=gradientDescent(X, y, theta, learning_rate, weight_decay) train_ls.append(log_rmse(model, train_features, train_labels, theta, len(train_labels)))帮我加个注释
# in_features表示输入特征的数量
in_features = train_features.shape[1]
# 定义训练函数,接受模型、训练数据、测试数据、超参数等作为输入
def train(model, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):
# 初始化训练误差和测试误差列表
train_ls, test_ls = [], []
# 初始化模型参数theta(权重)
theta = np.zeros((in_features, 1))
# 初始化最佳模型参数和最小测试误差
best_theta = np.zeros((in_features, 1))
best_loss = np.inf
# 循环迭代训练num_epochs次
for epoch in range(num_epochs):
# 随机生成batch_size大小的数据批次,用于训练
train_iter = data_iter(batch_size, train_features, train_labels)
# 遍历数据批次,计算梯度并更新模型参数theta
for X, y in train_iter:
theta=gradientDescent(X, y, theta, learning_rate, weight_decay)
# 计算每轮迭代后的训练误差和测试误差,并存入对应的列表中
train_ls.append(log_rmse(model, train_features, train_labels, theta, len(train_labels)))
test_ls.append(log_rmse(model, test_features, test_labels, theta, len(test_labels)))
# 如果当前模型参数对应的测试误差比历史最小值更小,则更新最佳模型参数和最小测试误差
if test_ls[-1] < best_loss:
best_theta = theta
best_loss = test_ls[-1]
# 返回最佳模型参数和训练误差、测试误差列表
return best_theta, train_ls, test_ls
def nnCostFunction(nn_params,input_layer_size, hidden_layer_size, num_labels,X, y,Lambda): # Reshape nn_params back into the parameters Theta1 and Theta2 Theta1 = nn_params[:((input_layer_size+1) * hidden_layer_size)].reshape(hidden_layer_size,input_layer_size+1) Theta2 = nn_params[((input_layer_size +1)* hidden_layer_size ):].reshape(num_labels,hidden_layer_size+1) m = X.shape[0] J=0 X = np.hstack((np.ones((m,1)),X)) y10 = np.zeros((m,num_labels)) a1 = sigmoid(X @ Theta1.T) a1 = np.hstack((np.ones((m,1)), a1)) # hidden layer a2 = sigmoid(a1 @ Theta2.T) # output layer for i in range(1,num_labels+1): y10[:,i-1][:,np.newaxis] = np.where(y==i,1,0) for j in range(num_labels): J = J + sum(-y10[:,j] * np.log(a2[:,j]) - (1-y10[:,j])*np.log(1-a2[:,j])) cost = 1/m* J reg_J = cost + Lambda/(2*m) * (np.sum(Theta1[:,1:]**2) + np.sum(Theta2[:,1:]**2)) # Implement the backpropagation algorithm to compute the gradients grad1 = np.zeros((Theta1.shape)) grad2 = np.zeros((Theta2.shape)) for i in range(m): xi= X[i,:] # 1 X 401 a1i = a1[i,:] # 1 X 26 a2i =a2[i,:] # 1 X 10 d2 = a2i - y10[i,:] d1 = Theta2.T @ d2.T * sigmoidGradient(np.hstack((1,xi @ Theta1.T))) grad1= grad1 + d1[1:][:,np.newaxis] @ xi[:,np.newaxis].T grad2 = grad2 + d2.T[:,np.newaxis] @ a1i[:,np.newaxis].T grad1 = 1/m * grad1 grad2 = 1/m*grad2 grad1_reg = grad1 + (Lambda/m) * np.hstack((np.zeros((Theta1.shape[0],1)),Theta1[:,1:])) grad2_reg = grad2 + (Lambda/m) * np.hstack((np.zeros((Theta2.shape[0],1)),Theta2[:,1:])) return cost, grad1, grad2,reg_J, grad1_reg,grad2_reg
这是一个实现神经网络的代码,主要包括两个部分:前向传播和反向传播。其中,前向传播部分计算每个样本的预测值和损失函数,反向传播部分计算每个参数的梯度。具体来说,该函数接收神经网络的参数、输入层大小、隐藏层大小、输出层大小、训练数据、训练数据的标签、正则化参数Lambda。该函数首先将参数Theta1和Theta2恢复成原来的矩阵形式,然后计算每个样本的预测值和损失函数,再计算每个参数的梯度。最后,该函数返回损失函数和梯度,包括未经过正则化和经过正则化的梯度。
阅读全文