import random m = map(int, input("").split()) n = map(int, input("").split()) random.seed(m) num_list = [] for i in range(n): num_list.append(str(random.randint(0, 9))) print("", num_list) num_list=list(set(num_list)) num_list.sort() print("", num_list)
时间: 2023-06-20 19:05:08 浏览: 89
这段代码的作用是:从输入中读取两个整数m和n,使用m作为随机数生成器的种子,生成n个随机数字并将其存储在一个列表中。然后,对该列表进行去重和排序,最后输出去重且排序后的列表。
具体来说,代码的执行流程如下:
1. 从输入中读取两个整数m和n。
2. 使用m作为随机数生成器的种子,生成n个随机数字并将其存储在num_list列表中。
3. 输出生成的随机数字列表num_list。
4. 对num_list进行去重,使用set函数将其转换为集合再转换为列表,并将去重后的结果重新赋值给num_list。
5. 对num_list进行排序,使用sort函数进行升序排序。
6. 输出去重且排序后的列表num_list。
需要注意的是,代码中第二行的输入语句有问题,应该改为:
m = int(input(""))
n = int(input(""))
相关问题
import random m, n = map(int, input("").split()) random.seed(m) num_list = [] for i in range(n): num_list.append(str(random.randint(0, 9))) print("", num_list) num_list=list(set(num_list)) num_list.sort() print("", num_list)
这段代码是生成 n 个随机数,并去重排序之后输出。其中,随机数的生成依赖于一个种子 m,保证每次运行生成的随机数序列是一样的。具体解释如下:
1. 首先通过 `map(int, input("").split())` 从标准输入中读入两个数 m 和 n。
2. 通过 `random.seed(m)` 设定种子,保证每次运行生成的随机数序列是一样的。
3. 通过 `num_list=[]` 创建一个空列表,准备存储随机数。
4. 通过 `for i in range(n)` 循环 n 次,每次生成一个 0-9 之间的随机整数,并将其转换成字符串类型后添加到 num_list 列表中。
5. 输出生成的随机数序列,由于每次生成的随机数序列都是不同的,因此这里需要加上一个空格,避免输出混乱。
6. 通过 `num_list=list(set(num_list))` 将 num_list 列表去重。
7. 通过 `num_list.sort()` 将 num_list 列表排序。
8. 输出去重排序后的随机数序列。同样需要加上一个空格,避免输出混乱。
需要注意的是,这段代码中使用的随机数生成函数是 `random.randint(a, b)`,它会生成一个 a 到 b 之间的随机整数,包括 a 和 b。如果需要生成浮点数可以使用 `random.uniform(a, b)` 函数。
下面的代码哪里有问题,帮我改一下from __future__ import print_function import numpy as np import tensorflow import keras from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten from keras.layers import Conv2D,MaxPooling2D from keras import backend as K import tensorflow as tf import datetime import os np.random.seed(0) from sklearn.model_selection import train_test_split from PIL import Image import matplotlib.pyplot as plt from keras.datasets import mnist images = [] labels = [] (x_train,y_train),(x_test,y_test)=mnist.load_data() X = np.array(images) print (X.shape) y = np.array(list(map(int, labels))) print (y.shape) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) print (x_train.shape) print (x_test.shape) print (y_train.shape) print (y_test.shape) ############################ ########## batch_size = 20 num_classes = 4 learning_rate = 0.0001 epochs = 10 img_rows,img_cols = 32 , 32 if K.image_data_format() =='channels_first': x_train =x_train.reshape(x_train.shape[0],1,img_rows,img_cols) x_test = x_test.reshape(x_test.shape[0],1,img_rows,img_cols) input_shape = (1,img_rows,img_cols) else: x_train = x_train.reshape(x_train.shape[0],img_rows,img_cols,1) x_test = x_test.reshape(x_test.shape[0],img_rows,img_cols,1) input_shape =(img_rows,img_cols,1) x_train =x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:',x_train.shape) print(x_train.shape[0],'train samples') print(x_test.shape[0],'test samples')
代码中存在以下问题:
1. 变量 images 和 labels 没有被赋值,而后面却使用了它们来构造 X 和 y,导致 X 和 y 的值都为空。
2. 导入的 mnist 数据集没有被使用,而是使用了未定义的 images 和 labels,需要将其替换为 mnist 数据集。
3. input_shape 的值应该是三元组 (img_rows, img_cols, 1),而代码中缺少了最后一个 1。
4. 在 if K.image_data_format() =='channels_first': 分支中,x_train 和 x_test 被改变了形状,但 y_train 和 y_test 却没有被改变,需要将其同步修改。
下面是修改后的代码:
```
from __future__ import print_function
import numpy as np
import tensorflow
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
import tensorflow as tf
import datetime
import os
np.random.seed(0)
from sklearn.model_selection import train_test_split
from PIL import Image
import matplotlib.pyplot as plt
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
print(x_train.shape)
print(y_train.shape)
############################
##########
batch_size = 20
num_classes = 10
learning_rate = 0.0001
epochs = 10
img_rows, img_cols = 32, 32
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (img_rows, img_cols, 1)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print('input_shape:', input_shape)
```
阅读全文