temp = randperm(350); P_train = res(temp(1: 200), 1: 3)'; T_train = reshape(temp(1: 200), 4: 5)'; M = size(P_train, 2);
时间: 2024-05-23 20:16:41 浏览: 154
请问这段代码的作用是什么?
答:这段代码的作用是从一个大小为350的矩阵中随机选择200个元素作为训练集的索引,然后使用这些索引从res矩阵中选取对应的行和列,构成训练数据P_train和T_train。其中P_train是一个3行200列的矩阵,T_train是一个5行40列的矩阵,M表示训练数据P_train的列数。
相关问题
temp = randperm(103); P_train = res(temp(1: 80), 1: 7)'; T_train = res(temp(1: 80), 8)'; M = size(P_train, 2); P_test = res(temp(81: end), 1: 7)'; T_test = res(temp(81: end), 8)'; N = size(P_test, 2);
这段代码的作用是将数据集随机分成训练集和测试集,其中`res`是原始数据集,包含了8列,前7列为输入特征,最后1列为目标输出。
具体的操作步骤如下:
1. 使用`randperm`函数生成一个1到103的随机排列,共有103个数据点。
```matlab
temp = randperm(103);
```
2. 将前80个随机排列作为训练集,后23个随机排列作为测试集。
```matlab
P_train = res(temp(1: 80), 1: 7)'; % 取前80个随机排列作为训练集特征
T_train = res(temp(1: 80), 8)'; % 取前80个随机排列作为训练集目标输出
M = size(P_train, 2); % 训练集样本数量
P_test = res(temp(81: end), 1: 7)'; % 取后23个随机排列作为测试集特征
T_test = res(temp(81: end), 8)'; % 取后23个随机排列作为测试集目标输出
N = size(P_test, 2); % 测试集样本数量
```
3. `P_train`和`P_test`分别是训练集和测试集的输入特征矩阵,每一列代表一个样本的输入特征向量。`T_train`和`T_test`分别是训练集和测试集的目标输出向量,每个元素代表一个样本的目标输出值。在这段代码中,`M`和`N`分别代表训练集和测试集的样本数量。
%% res=result %% 划分训练集与测试集 % temp=randperm(1046582); P_train=res(1:30:32340,1:18)'; T_train=res(1:30:32340,19)'; M=size(P_train,2); P_test=res(32340:30:end,1:18)'; T_test=res(32340:30:end,19)'; N=size(P_test,2); %% 数据归一化 [P_train,ps_input]=mapminmax(P_train,0,1); P_test=mapminmax('apply',P_test,ps_input); t_train=categorical(T_train)'; t_test=categorical(T_test); %% 数据平铺 P_train=double(reshape(P_train,18,1,1,M)); P_test=double(reshape(P_test,18,1,1,N)); %% 数据格式转换 for i=1:M p_train{i,1}=P_train(:,:,1,i); end for i=1:N p_test{i,1}=P_test(:,:,1,i); end %% 创建网络 layers=[... sequenceInputLayer(18) %输入层 lstmLayer(6,'OutputMode','last') %LSTM层 reluLayer %Relu激活层 fullyConnectedLayer(3) %全连接层 softmaxLayer %分类层 classificationLayer]; %% 参数设置 options=trainingOptions('adam',...%Adam梯度下降算法 'MiniBatchSize',100,... %批大小 'MaxEpochs',1000,... %最大迭代轮数 'InitialLearnRate',1e-2,... 'LearnRateSchedule','piecewise',... 'LearnRateDropFactor',0.1,... 'LearnRateDropPeriod',700,... 'Shuffle','every-epoch',... 'ValidationPatience',Inf,... 'Plots','training-progress',... 'Verbose',false); %% 训练模型 net=trainNetwork(p_train,t_train,layers,options);报错:Invalid training data. The output size (3) of the last layer does not match the number of classes of the responses (2).
根据报错信息,模型输出层的维度为3,而数据标签的类别数只有2。这意味着您的模型不适合处理这个问题,需要进行一些调整。
您可以将模型的输出层从3更改为2,以适应数据标签的类别数。请将以下代码行:
```
fullyConnectedLayer(3) %全连接层
```
更改为:
```
fullyConnectedLayer(2) %全连接层
```
然后再次运行您的训练代码,应该就可以解决这个问题了。
阅读全文