matlabn步重开始的共轭梯度法求极小值点完整代码
时间: 2023-07-09 12:51:04 浏览: 96
共轭梯度法的matlab程序
5星 · 资源好评率100%
以下是使用matlab实现n步重启的共轭梯度法求函数极小值点的完整代码:
```
function [x, fval, iter] = conjgrad_minimize(f, gradf, x0, tol, maxiter, n)
% f: 目标函数
% gradf: 目标函数的梯度
% x0: 初始点
% tol: 收敛精度
% maxiter: 最大迭代次数
% n: 重启步长
% x: 迭代结果
% fval: 最小函数值
% iter: 实际迭代次数
% 初始化
x = x0;
fval = f(x);
g = gradf(x);
p = -g;
iter = 0;
while iter < maxiter
Ap = gradf(x+p);
alpha = (g'*g)/(p'*Ap);
x_new = x + alpha*p;
fval_new = f(x_new);
% 判断收敛
if abs(fval_new - fval) < tol
break;
end
% 重启
if mod(iter,n) == 0
p = -gradf(x_new);
else
beta = (gradf(x_new)'*gradf(x_new))/(g'*g);
p = -gradf(x_new) + beta*p;
end
x = x_new;
fval = fval_new;
g = gradf(x);
iter = iter + 1;
end
end
```
其中,f表示目标函数,gradf为目标函数的梯度,x0为初始点,tol为收敛精度,maxiter为最大迭代次数,n为重启步长。在重启时,将下一轮的初始搜索方向设为当前负梯度方向,而非使用之前的搜索方向p。函数最终返回迭代结果x,最小函数值fval,以及实际迭代次数iter。
阅读全文