粒子滤波代码pytorch
时间: 2023-10-22 20:10:45 浏览: 94
粒子滤波代码
以下一个使用PyTorch实现粒子滤波的示例代码:
```python
import torch
import numpy as np
# 初始化粒子
def init_particles(num_particles):
particles = torch.randn(num_particles, 1)
weights = torch.ones(num_particles) / num_particles
return particles, weights
# 更新粒子
def update_particles(particles, weights, measurement_noise):
particles += measurement_noise * torch.randn_like(particles)
weights.fill_(1.0)
# 计算权重
def compute_weights(particles, weights, measurement, measurement_noise):
likelihood = torch.exp(-0.5 * ((particles - measurement) / measurement_noise) ** 2)
weights *= likelihood / torch.sum(likelihood)
# 重采样
def resample(particles, weights):
indices = torch.multinomial(weights, len(weights), replacement=True)
particles.copy_(particles[indices])
weights.fill_(1.0 / len(weights))
# 粒子滤波主程序
def particle_filter(num_particles, T, measurement_noise):
particles, weights = init_particles(num_particles)
for t in range(T):
# 测量
measurement = torch.tensor([t], dtype=torch.float32)
# 更新粒子状态
update_particles(particles, weights, measurement_noise)
# 计算权重
compute_weights(particles, weights, measurement, measurement_noise)
# 重采样
resample(particles, weights)
# 输出估计值
estimated_state = torch.mean(particles)
print("时刻 {}: 估计值 = {}".format(t, estimated_state.item()))
# 运行粒子滤波
num_particles = 1000 # 粒子数
T = 10 # 时间步数
measurement_noise = 0.1 # 测量噪声
particle_filter(num_particles, T, measurement_noise)
```
阅读全文