You are given a positive integer nn. In this problem, the MEXMEX of a collection of integers c1,c2,…,ckc1,c2,…,ck is defined as the smallest positive integer xx which does not occur in the collection cc. The primality of an array a1,…,ana1,…,an is defined as the number of pairs (l,r)(l,r) such that 1≤l≤r≤n1≤l≤r≤n and MEX(al,…,ar)MEX(al,…,ar) is a prime number. Find any permutation of 1,2,…,n1,2,…,n with the maximum possible primality among all permutations of 1,2,…,n1,2,…,n.用中文回答
时间: 2024-01-18 08:02:22 浏览: 132
给定一个正整数n。
在这个问题中,集合c1,c2,…,ckc1,c2,…,ck的MEX(最小排外)定义为不在集合cc中出现的最小正整数xx。
数组a1,…,ana1,…,an的素性定义为对于所有的1≤l≤r≤n1≤l≤r≤n,MEX(al,…,ar)MEX(al,…,ar)是一个质数的对数。
要求找到1,2,...,n1,2,...,n的排列中具有最大可能素性的任意排列。
解答:
一个具有最大可能素性的排列可以通过将所有质数放在前面,然后将所有非质数放在后面来实现。
首先,我们需要找到1到nn之间的所有质数。我们可以使用常规的质数生成算法(如埃拉托斯特尼筛法)来找到这些质数。
然后,我们将这些质数按照从小到大的顺序放入一个列表中。
接下来,我们将剩余的非质数(即除了质数之外的所有数字)按照从小到大的顺序放入另一个列表中。
最后,我们将两个列表连接起来,即先放置质数列表,再放置非质数列表。
这样,我们得到了一个具有最大可能素性的排列。
相关问题
You are given a positive integer n . In this problem, the MEX of a collection of integers c1,c2,…,ck is defined as the smallest positive integer x which does not occur in the collection c . The primality of an array a1,…,an is defined as the number of pairs (l,r) such that 1≤l≤r≤n and MEX(al,…,ar) is a prime number. Find any permutation of 1,2,…,n with the maximum possible primality among all permutations of 1,2,…,n . Note: A prime number is a number greater than or equal to 2 that is not divisible by any positive integer except 1 and itself. For example, 2,5,13 are prime numbers, but 1 and 6 are not prime numbers. A permutation of 1,2,…,n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array), and [1,3,4] is also not a permutation (n=3 but there is 4 in the array). Input Each test contains multiple test cases. The first line contains the number of test cases t (1≤t≤104 ). The description of the test cases follows. The only line of each test case contains a single integer n (1≤n≤2⋅105 ). It is guaranteed that the sum of n over all test cases does not exceed 2⋅105 . Output For each test case, output n integers: a permutation of 1,2,…,n that achieves the maximum possible primality. If there are multiple solutions, print any of them. 用c++如何实现,并写出题解
以下是一个用C++实现的解题代码:
```cpp
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// 检查一个数是否为质数
bool isPrime(int num) {
if (num < 2) return false;
for (int i = 2; i * i <= num; i++) {
if (num % i == 0) return false;
}
return true;
}
// 找到最大可能的质数
vector<int> findMaxPrimality(int n) {
vector<int> permutation(n);
for (int i = 0; i < n; i++) {
permutation[i] = i + 1;
}
// 如果n为1或2,则返回原始序列
if (n == 1 || n == 2) return permutation;
// 如果n为偶数,将最后两个数交换位置
if (n % 2 == 0) {
swap(permutation[n-1], permutation[n-2]);
}
// 将质数放在前面,非质数放在后面
for (int i = 2; i <= n; i++) {
if (isPrime(i)) {
swap(permutation[i-1], permutation[n-1]);
break;
}
}
return permutation;
}
int main() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
vector<int> permutation = findMaxPrimality(n);
for (int i = 0; i < n; i++) {
cout << permutation[i] << " ";
}
cout << endl;
}
return 0;
}
```
解题思路:
1. 首先,我们考虑特殊情况,当n为1或2时,最大可能的质数就是原始序列。
2. 对于n为偶数的情况,我们可以将最后两个数交换位置,这样可以保证最后一个数不会是质数,因为偶数除2外都不是质数。
3. 对于n为奇数的情况,我们可以将最后一个质数放在序列的最后,其他非质数放在其他位置。我们可以通过遍历从2到n的数字,找到第一个质数,并将其与最后一个数字交换位置。
4. 最后输出得到的排列即为最大可能的质数排列之一。
希望这个解题思路对你有帮助!
用C++完成题目描述 Given are a sequence of N positive integers A1,A2,…,AN, and a positive integer K. Find the number of non-empty contiguous subsequences in A such that the remainder when dividing the sum of its elements by K is equal to the number of its elements. We consider two subsequences different if they are taken from different positions, even if they are equal sequences. Constraints ·All values in input are integers. ·1≤N≤2×105 ·1≤K≤109 ·1≤Ai≤109 输入 Input is given from Standard Input in the following format: N K A1 A2 ⋯ AN 输出 Print the number of subsequences that satisfy the condition.
好的,我理解了你的问题。这是一个经典的数学问题,可以使用C语言来解决。下面是我提供的一个C语言解决方案:
```c
#include<stdio.h>
#define ll long long
#define MAXN 200005
int n, k;
int a[MAXN];
int pre[MAXN];
ll cnt[MAXN];
int main() {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
pre[i] = (pre[i - 1] + a[i]) % k;
cnt[pre[i]]++;
}
ll ans = 0;
for (int i = 0; i < k; i++) {
ans += cnt[i] * (cnt[i] - 1) / 2;
}
printf("%lld\n", ans);
return 0;
}
```
这个程序的思路如下:
首先将输入的序列进行预处理,计算它的前缀和,并对它们做模K的运算。
然后,我们用一个数组cnt记录每个余数出现的次数。由于我们只需要计算满足条件的子序列数目,因此可以用cnt[i]中的余数为i的数目计算出余数为i的子序列的数量。
最后,我们用一个变量ans累加所有余数为i的子序列的数量,其中i的取值范围为[0,k)。由于一个子序列可能满足多个余数的条件,因此需要将满足某个余数的子序列数量两两配对,最后除以2。这里的配对是通过n(n-1)/2计算的,n为余数为i的子序列的数量。
希望这个答案对你有所帮助。
阅读全文