You are given two positive integers, a and b (a<b ). For some positive integer n , two players will play a game starting with a pile of n stones. They take turns removing exactly a or exactly b stones from the pile. The player who is unable to make a move loses. Find a positive integer n such that the second player to move in this game has a winning strategy. This means that no matter what moves the first player makes, the second player can carefully choose their moves (possibly depending on the first player's moves) to ensure they win. 请帮我编写一个C++代码,并用中文解释
时间: 2024-04-11 22:29:01 浏览: 253
好的!下面是用C++编写的代码,并附有中文解释:
```cpp
#include <iostream>
int main() {
int t;
std::cin >> t; // 输入测试用例的数量
while (t--) {
int a, b;
std::cin >> a >> b; // 输入整数 a 和 b
// 选择一个 n,使得在游戏开始时,第二个玩家有必胜策略
int n = b - 1; // 将 n 设置为 b-1
std::cout << n << std::endl; // 输出 n
}
return 0;
}
```
这段代码首先读取测试用例的数量 `t`,然后对于每个测试用例,它会读取整数 `a` 和 `b`。接下来,它将 `n` 设置为 `b-1`,这样第二个玩家就能够确保有必胜策略。最后,输出 `n`。
注意:问题中说明在给定的约束条件下,总是存在一个满足要求的正整数 `n`。以上代码选择了 `n` 的值为 `b-1`,但你也可以选择其他满足条件的正整数作为 `n`。
相关问题
1. Dividing Two Integers (2’) Given two positive integers A and B (A is a divisor and B is a dividend, as dividend and divisor. Output the integer result of A / B. Please compute the result without using multiplication (*), division (/) and mod(%) operator. Note: 1. The integer division should truncate toward zero, which means losing its fractional part. 2. Divisor cannot be the zero and the output must be a number.
To solve this problem, we can use repeated subtraction to find how many times the divisor can be subtracted from the dividend without going below zero. This will give us the integer result of the division. Here's the code in Python:
```
def divide(divisor, dividend):
if divisor == 0:
return None # Divisor cannot be zero
if dividend == 0:
return 0 # Dividend is zero, so result is zero
# determine sign of the result
negative = (divisor < 0) ^ (dividend < 0)
# convert to positive numbers
divisor = abs(divisor)
dividend = abs(dividend)
quotient = 0
while dividend >= divisor:
dividend -= divisor
quotient += 1
# restore sign of the result
if negative:
quotient = -quotient
return quotient
```
In this code, we first check if the divisor is zero, which is not allowed. If the dividend is zero, then the result is zero. We also determine the sign of the result by checking if the divisor and dividend have different signs.
We then convert both the divisor and dividend to positive numbers to simplify the repeated subtraction. We use a while loop to subtract the divisor from the dividend until we can no longer do so without going below zero. We keep track of how many times we subtracted the divisor, which is the integer result of the division.
Finally, we restore the sign of the result if necessary and return it. This code should work for any positive integers A and B, as long as A is not zero.
请用C语言实现Once upon a time in the mystical land of Draconis, there existed two powerful arrays: M and N . These arrays were filled with positive integers, each carrying its own magical essence. The inhabitants of the land were intrigued by the concept of similarity between arrays. They discovered that two arrays, M and N , could be considered similar if it was possible to transform a subarray of N into M by adding or subtracting a constant value to each element. You are now summoned to solve a puzzle. Given two arrays, M and N , your task is to determine the number of subarrays of N that are similar to M . Will you be able to unravel this mystical connection? Input The input consists of multiple lines. The first line contains two integers M and N (1≤M≤N≤106) , representing the lengths of arrays M and N respectively. The second line contains M space-separated positive integers m1,m2,…,mM (1≤mi≤109) , representing the magical elements of array M . The third line contains N space-separated positive integers n1,n2,…,nN (1≤ni≤109) , representing the mystical elements of array N . Output Output a single integer, the number of subarrays of N that are similar to M .
为了解决这个问题,我们可以先对两个数组进行排序,然后用双指针法来找到所有相似的子数组。具体实现如下:
```c
#include <stdio.h>
#include <stdlib.h>
#define MAX_N 1000000
int M[MAX_N], N[MAX_N];
int m, n;
int compare(const void *a, const void *b) {
return *(int*)a - *(int*)b;
}
int count_similar() {
int i = 0, j = 0;
int count = 0;
while (i < m && j < n) {
if (M[i] == N[j]) { // 找到相同的元素
int k = j;
while (k < n && N[k] == N[j]) {
k++;
}
count += k - j; // 加上与N[j]相同的元素的个数
i++;
j = k;
} else if (M[i] < N[j]) { // M[i]较小,需要增加N中的元素
i++;
} else { // M[i]较大,需要减少N中的元素
j++;
}
}
return count;
}
int main() {
scanf("%d%d", &m, &n);
for (int i = 0; i < m; i++) {
scanf("%d", &M[i]);
}
for (int i = 0; i < n; i++) {
scanf("%d", &N[i]);
}
qsort(M, m, sizeof(int), compare);
qsort(N, n, sizeof(int), compare);
printf("%d\n", count_similar());
return 0;
}
```
首先读入两个数组的长度和元素,然后对它们进行排序。然后用双指针法找到所有相似的子数组,具体方法如下:
1. 初始化两个指针i和j,分别指向M和N的开头;
2. 如果M[i]等于N[j],说明找到了一个相似的子数组,接着向右移动j,直到N[j]不等于N[j+1];
3. 如果M[i]小于N[j],说明N[j]需要增加,所以向右移动i;
4. 如果M[i]大于N[j],说明N[j]需要减少,所以向右移动j;
5. 重复2~4步,直到i到达M的末尾或j到达N的末尾。
遍历过程中,我们用一个计数器count来累计相似的子数组的个数,每当找到一个相似的子数组时,我们就把与N[j]相同的元素的个数加到count中。最后返回count即可。
时间复杂度为O(MlogM + NlogN),空间复杂度为O(M + N)。
阅读全文
相关推荐
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)