pythonCalculate A * B. 输入 Each line will contain two integers A and B. Process to end of file. Note: the length of each integer will not exceed 50000.
时间: 2023-02-12 18:12:47 浏览: 113
可以使用 Python 的内置函数 int() 将输入的字符串转换为整数,然后使用乘法运算符 * 计算 A * B。
示例代码如下:
```
while True:
try:
a, b = map(int, input().split())
print(a * b)
except:
break
```
这段代码会不断读取输入的两个整数并相乘,直到输入结束。
相关问题
Problem B Double Rainbow Time Limit: 1 Second Let 𝑃 be a set of 𝑛 points on the 𝑥-axis and each of the points is colored with one of the colors 1,2, . . . , 𝑘. For each color 𝑖 of the 𝑘 colors, there is at least one point in 𝑃 which is colored with 𝑖. For a set 𝑃 ′ of consecutive points from 𝑃, if both 𝑃 ′ and 𝑃 ∖ 𝑃 ′ contain at least one point of each color, then we say that 𝑃 ′ makes a double rainbow. See the below figure as an example. The set 𝑃 consists of ten points and each of the points is colored by one of the colors 1, 2, 3, and 4. The set 𝑃 ′ of the five consecutive points contained in the rectangle makes a double rainbow. Given a set 𝑃 of points and the number 𝑘 of colors as input, write a program that computes and prints out the minimum size of 𝑃 ′ that makes a double rainbow. Input Your program is to read from standard input. The input starts with a line containing two integers 𝑛 and 𝑘 (1 ≤ 𝑘 ≤ 𝑛 ≤ 10,000), where 𝑛 is the number of the points in 𝑃 and 𝑘 is the number of the colors. Each of the following 𝑛 lines consists of an integer from 1 to 𝑘, inclusively, and the 𝑖-th line corresponds to the color of the 𝑖-th point of 𝑃 from the left. Output Your program is to write to standard output. Print exactly one line. The line should contain the minimum size of 𝑃 ′ that makes a double rainbow. If there is no such 𝑃 ′ , print 0. The following shows sample input and output for two test cases. 具体步骤
首先,我们可以使用两个指针来表示𝑃′的起始和结束位置。初始时,这两个指针都指向𝑃的开头。然后,我们可以使用一个辅助数据结构来记录𝑃′中每种颜色的出现次数。
接下来,我们可以使用一个循环来移动右指针,直到𝑃′中包含了所有颜色。在每次移动右指针之后,我们可以检查当前𝑃′是否满足双彩虹的条件。如果满足条件,则更新最小𝑃′的大小。
接着,我们可以使用另一个循环来移动左指针,并在每次移动之后更新颜色的出现次数。当左指针移动到右指针所在位置时,我们可以检查当前𝑃′是否仍然满足双彩虹的条件。如果满足条件,则继续更新最小𝑃′的大小。
最后,我们可以输出最小𝑃′的大小作为结果。
下面是一个可能的实现(使用Python语言):
```python
def find_minimum_double_rainbow(n, k, colors):
color_counts = [0] * k
left = 0
min_size = float('inf')
for right in range(n):
color_counts[colors[right] - 1] += 1
while len(set(color_counts)) == k:
min_size = min(min_size, right - left + 1)
color_counts[colors[left] - 1] -= 1
left += 1
return min_size if min_size != float('inf') else 0
# 读取输入
n, k = map(int, input().split())
colors = [int(input()) for _ in range(n)]
# 寻找最小双彩虹的大小
min_size = find_minimum_double_rainbow(n, k, colors)
# 输出结果
print(min_size)
```
这个实现的时间复杂度为O(n),其中n是𝑃的大小。在最坏情况下,我们需要遍历𝑃两次,因此总的时间复杂度为O(2n),即O(n)。
写一个程序,并在代码中加入中文注释 - The input txt file has 3 lines. The first line has only one integer, the capacity of the bag. The second line has a bunch of positive integers for the value of each item. Two integers are separated by a comma “,”. The third line is in the same format as the second for the weight of each item. - When the calculation is finished, print the optimal value and optimal solution(s) one for each line on the screen. (The optimal value is unique, but the optimal solution may not.) - Sort the items in the optimal solution(s) in the decreasing order of item indices. - The index of items starts from 1. In your program, you need to implement three source files “main.cpp”, “lib.h” and “lib.cpp” For “main.cpp” - It only contains the “main” function. - It reads inputs from .txt files. The input txt file is passed to the main function as an argument. - Each txt file contains exactly one instance. For “lib.h” and “lib.cpp” - .h is the header file for .cpp. - They contain all other functions except “main”.
以下是对应的代码和注释:
// lib.h
#ifndef LIB_H
#define LIB_H
#include <vector>
#include <string>
// 定义物品结构体
struct Item {
int value; // 物品价值
int weight; // 物品重量
int index; // 物品编号
};
// 读取文件并返回相应的参数
void readInput(std::string fileName, int& capacity, std::vector<Item>& items);
// 计算背包问题的最优解
int knapsack(int capacity, std::vector<Item>& items, std::vector<std::vector<int>>& dp);
// 回溯寻找最优解
void backtrack(std::vector<Item>& items, std::vector<std::vector<int>>& dp, std::vector<int>& solution, int i, int j);
// 打印最优解
void printSolution(int optimalValue, std::vector<int>& solution);
#endif
// lib.cpp
#include <iostream>
#include <fstream>
#include <algorithm>
#include "lib.h"
using namespace std;
void readInput(string fileName, int& capacity, vector<Item>& items) {
ifstream inputFile(fileName);
if (inputFile.is_open()) {
// 读取背包容量
inputFile >> capacity;
int value, weight, index = 1;
char comma;
// 读取物品价值和重量
while (inputFile >> value >> comma >> weight) {
items.push_back({value, weight, index});
index++;
}
inputFile.close();
}
}
int knapsack(int capacity, vector<Item>& items, vector<vector<int>>& dp) {
int n = items.size();
// 初始化dp数组,dp[i][j]表示前i个物品放入容量为j的背包中的最大价值
for (int i = 0; i <= n; i++) {
dp[i][0] = 0;
}
for (int j = 0; j <= capacity; j++) {
dp[0][j] = 0;
}
// 动态规划计算最优解
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= capacity; j++) {
if (items[i-1].weight > j) {
dp[i][j] = dp[i-1][j];
}
else {
dp[i][j] = max(dp[i-1][j], dp[i-1][j-items[i-1].weight] + items[i-1].value);
}
}
}
// 返回最优解
return dp[n][capacity];
}
void backtrack(vector<Item>& items, vector<vector<int>>& dp, vector<int>& solution, int i, int j) {
if (i == 0 || j == 0) {
return;
}
if (dp[i][j] == dp[i-1][j]) {
// 第i个物品没有选
backtrack(items, dp, solution, i-1, j);
}
else if (dp[i][j] == dp[i-1][j-items[i-1].weight] + items[i-1].value) {
// 第i个物品选了
solution.push_back(items[i-1].index);
backtrack(items, dp, solution, i-1, j-items[i-1].weight);
}
}
void printSolution(int optimalValue, vector<int>& solution) {
// 打印最优值
cout << "Optimal value: " << optimalValue << endl;
// 打印最优解
cout << "Optimal solution(s):" << endl;
sort(solution.begin(), solution.end(), greater<int>());
for (int i = 0; i < solution.size(); i++) {
cout << solution[i] << " ";
}
cout << endl;
}
// main.cpp
#include <iostream>
#include <vector>
#include "lib.h"
using namespace std;
int main(int argc, char* argv[]) {
if (argc < 2) {
cerr << "Usage: " << argv[0] << " input.txt" << endl;
return 1;
}
string fileName = argv[1];
int capacity;
vector<Item> items;
readInput(fileName, capacity, items);
vector<vector<int>> dp(items.size()+1, vector<int>(capacity+1, 0));
int optimalValue = knapsack(capacity, items, dp);
vector<int> solution;
backtrack(items, dp, solution, items.size(), capacity);
printSolution(optimalValue, solution);
return 0;
}
阅读全文