pythonCalculate A * B. 输入 Each line will contain two integers A and B. Process to end of file. Note: the length of each integer will not exceed 50000.

时间: 2023-02-12 18:12:47 浏览: 113
可以使用 Python 的内置函数 int() 将输入的字符串转换为整数,然后使用乘法运算符 * 计算 A * B。 示例代码如下: ``` while True: try: a, b = map(int, input().split()) print(a * b) except: break ``` 这段代码会不断读取输入的两个整数并相乘,直到输入结束。
相关问题

Problem B Double Rainbow Time Limit: 1 Second Let 𝑃 be a set of 𝑛 points on the 𝑥-axis and each of the points is colored with one of the colors 1,2, . . . , 𝑘. For each color 𝑖 of the 𝑘 colors, there is at least one point in 𝑃 which is colored with 𝑖. For a set 𝑃 ′ of consecutive points from 𝑃, if both 𝑃 ′ and 𝑃 ∖ 𝑃 ′ contain at least one point of each color, then we say that 𝑃 ′ makes a double rainbow. See the below figure as an example. The set 𝑃 consists of ten points and each of the points is colored by one of the colors 1, 2, 3, and 4. The set 𝑃 ′ of the five consecutive points contained in the rectangle makes a double rainbow. Given a set 𝑃 of points and the number 𝑘 of colors as input, write a program that computes and prints out the minimum size of 𝑃 ′ that makes a double rainbow. Input Your program is to read from standard input. The input starts with a line containing two integers 𝑛 and 𝑘 (1 ≤ 𝑘 ≤ 𝑛 ≤ 10,000), where 𝑛 is the number of the points in 𝑃 and 𝑘 is the number of the colors. Each of the following 𝑛 lines consists of an integer from 1 to 𝑘, inclusively, and the 𝑖-th line corresponds to the color of the 𝑖-th point of 𝑃 from the left. Output Your program is to write to standard output. Print exactly one line. The line should contain the minimum size of 𝑃 ′ that makes a double rainbow. If there is no such 𝑃 ′ , print 0. The following shows sample input and output for two test cases. 具体步骤

首先,我们可以使用两个指针来表示𝑃′的起始和结束位置。初始时,这两个指针都指向𝑃的开头。然后,我们可以使用一个辅助数据结构来记录𝑃′中每种颜色的出现次数。 接下来,我们可以使用一个循环来移动右指针,直到𝑃′中包含了所有颜色。在每次移动右指针之后,我们可以检查当前𝑃′是否满足双彩虹的条件。如果满足条件,则更新最小𝑃′的大小。 接着,我们可以使用另一个循环来移动左指针,并在每次移动之后更新颜色的出现次数。当左指针移动到右指针所在位置时,我们可以检查当前𝑃′是否仍然满足双彩虹的条件。如果满足条件,则继续更新最小𝑃′的大小。 最后,我们可以输出最小𝑃′的大小作为结果。 下面是一个可能的实现(使用Python语言): ```python def find_minimum_double_rainbow(n, k, colors): color_counts = [0] * k left = 0 min_size = float('inf') for right in range(n): color_counts[colors[right] - 1] += 1 while len(set(color_counts)) == k: min_size = min(min_size, right - left + 1) color_counts[colors[left] - 1] -= 1 left += 1 return min_size if min_size != float('inf') else 0 # 读取输入 n, k = map(int, input().split()) colors = [int(input()) for _ in range(n)] # 寻找最小双彩虹的大小 min_size = find_minimum_double_rainbow(n, k, colors) # 输出结果 print(min_size) ``` 这个实现的时间复杂度为O(n),其中n是𝑃的大小。在最坏情况下,我们需要遍历𝑃两次,因此总的时间复杂度为O(2n),即O(n)。

写一个程序,并在代码中加入中文注释 - The input txt file has 3 lines. The first line has only one integer, the capacity of the bag. The second line has a bunch of positive integers for the value of each item. Two integers are separated by a comma “,”. The third line is in the same format as the second for the weight of each item. - When the calculation is finished, print the optimal value and optimal solution(s) one for each line on the screen. (The optimal value is unique, but the optimal solution may not.) - Sort the items in the optimal solution(s) in the decreasing order of item indices. - The index of items starts from 1. In your program, you need to implement three source files “main.cpp”, “lib.h” and “lib.cpp” For “main.cpp” - It only contains the “main” function. - It reads inputs from .txt files. The input txt file is passed to the main function as an argument. - Each txt file contains exactly one instance. For “lib.h” and “lib.cpp” - .h is the header file for .cpp. - They contain all other functions except “main”.

以下是对应的代码和注释: // lib.h #ifndef LIB_H #define LIB_H #include <vector> #include <string> // 定义物品结构体 struct Item { int value; // 物品价值 int weight; // 物品重量 int index; // 物品编号 }; // 读取文件并返回相应的参数 void readInput(std::string fileName, int& capacity, std::vector<Item>& items); // 计算背包问题的最优解 int knapsack(int capacity, std::vector<Item>& items, std::vector<std::vector<int>>& dp); // 回溯寻找最优解 void backtrack(std::vector<Item>& items, std::vector<std::vector<int>>& dp, std::vector<int>& solution, int i, int j); // 打印最优解 void printSolution(int optimalValue, std::vector<int>& solution); #endif // lib.cpp #include <iostream> #include <fstream> #include <algorithm> #include "lib.h" using namespace std; void readInput(string fileName, int& capacity, vector<Item>& items) { ifstream inputFile(fileName); if (inputFile.is_open()) { // 读取背包容量 inputFile >> capacity; int value, weight, index = 1; char comma; // 读取物品价值和重量 while (inputFile >> value >> comma >> weight) { items.push_back({value, weight, index}); index++; } inputFile.close(); } } int knapsack(int capacity, vector<Item>& items, vector<vector<int>>& dp) { int n = items.size(); // 初始化dp数组,dp[i][j]表示前i个物品放入容量为j的背包中的最大价值 for (int i = 0; i <= n; i++) { dp[i][0] = 0; } for (int j = 0; j <= capacity; j++) { dp[0][j] = 0; } // 动态规划计算最优解 for (int i = 1; i <= n; i++) { for (int j = 1; j <= capacity; j++) { if (items[i-1].weight > j) { dp[i][j] = dp[i-1][j]; } else { dp[i][j] = max(dp[i-1][j], dp[i-1][j-items[i-1].weight] + items[i-1].value); } } } // 返回最优解 return dp[n][capacity]; } void backtrack(vector<Item>& items, vector<vector<int>>& dp, vector<int>& solution, int i, int j) { if (i == 0 || j == 0) { return; } if (dp[i][j] == dp[i-1][j]) { // 第i个物品没有选 backtrack(items, dp, solution, i-1, j); } else if (dp[i][j] == dp[i-1][j-items[i-1].weight] + items[i-1].value) { // 第i个物品选了 solution.push_back(items[i-1].index); backtrack(items, dp, solution, i-1, j-items[i-1].weight); } } void printSolution(int optimalValue, vector<int>& solution) { // 打印最优值 cout << "Optimal value: " << optimalValue << endl; // 打印最优解 cout << "Optimal solution(s):" << endl; sort(solution.begin(), solution.end(), greater<int>()); for (int i = 0; i < solution.size(); i++) { cout << solution[i] << " "; } cout << endl; } // main.cpp #include <iostream> #include <vector> #include "lib.h" using namespace std; int main(int argc, char* argv[]) { if (argc < 2) { cerr << "Usage: " << argv[0] << " input.txt" << endl; return 1; } string fileName = argv[1]; int capacity; vector<Item> items; readInput(fileName, capacity, items); vector<vector<int>> dp(items.size()+1, vector<int>(capacity+1, 0)); int optimalValue = knapsack(capacity, items, dp); vector<int> solution; backtrack(items, dp, solution, items.size(), capacity); printSolution(optimalValue, solution); return 0; }
阅读全文

相关推荐

用c++解决Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem - not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. Input The first line contains two integer: N - the number of hubs in the network (2 ≤ N ≤ 1000) and M — the number of possible hub connections (1 ≤ M ≤ 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs. Output Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Create a function pixel_flip(lst, orig_lst, budget, results, i=0) that uses recursion to generate all possible new unique images from the input orig_lst, following these rules: • The input lst is the current list being processed. Initially, this will be the same as orig_lst which is the original flattened image. • The input budget represents the number of pixels that can still be flipped. When the budget reaches 0, no more pixels can be flipped. • The input results is a list of resulting flattened images with flipped pixels. Initially, this will be an empty list. • The input i represents the index of the pixel being processed, by default set to 0, which is used to drive the recursive function towards its base case (i.e., initially starting from i=0). At termination of the function, the argument results should contain all possibilities of the input orig_lst by only flipping pixels from 0 to 1 under both the budget and the adjacency constraints. fill code at #TODO def pixel_flip(lst: list[int], orig_lst: list[int], budget: int, results: list, i: int = 0) -> None: """ Uses recursion to generate all possibilities of flipped arrays where a pixel was a 0 and there was an adjacent pixel with the value of 1. :param lst: 1D list of integers representing a flattened image . :param orig_lst: 1D list of integers representing the original flattened image. :param budget: Integer representing the number of pixels that can be flipped . :param results: List of 1D lists of integers representing all possibilities of flipped arrays, initially empty. :param i: Integer representing the index of the pixel in question. :return: None. """ #TODO def check_adjacent_for_one(flat_image: list[int], flat_pixel: int) -> bool: """ Checks if a pixel has an adjacent pixel with the value of 1. :param flat_image: 1D list of integers representing a flattened image . :param flat_pixel: Integer representing the index of the pixel in question. :return: Boolean. """ #TODO

用C++编写程序,实现以下问题2、题目ID Codes(POJ1146) Time Limit: 1000MS Memory Limit: 10000K 描述: It is 2084 and the year of Big Brother has finally arrived, albeit a century late. In order to exercise greater control over its citizens and thereby to counter a chronic breakdown in law and order, the Government decides on a radical measure--all citizens are to have a tiny microcomputer surgically implanted in their left wrists. This computer will contains all sorts of personal information as well as a transmitter which will allow people's movements to be logged and monitored by a central computer. (A desirable side effect of this process is that it will shorten the dole queue for plastic surgeons.) An essential component of each computer will be a unique identification code, consisting of up to 50 characters drawn from the 26 lower case letters. The set of characters for any given code is chosen somewhat haphazardly. The complicated way in which the code is imprinted into the chip makes it much easier for the manufacturer to produce codes which are rearrangements of other codes than to produce new codes with a different selection of letters. Thus, once a set of letters has been chosen all possible codes derivable from it are used before changing the set. For example, suppose it is decided that a code will contain exactly 3 occurrences of a', 2 of b' and 1 of c', then three of the allowable 60 codes under these conditions are: abaabc abaacb ababac These three codes are listed from top to bottom in alphabetic order. Among all codes generated with this set of characters, these codes appear consecutively in this order. Write a program to assist in the issuing of these identification codes. Your program will accept a sequence of no more than 50 lower case letters (which may contain repeated characters) and print the successor code if one exists or the message No Successor' if the given code is the last in the sequence for that set of characters. 输入: Input will consist of a series of lines each containing a string representing a code. The entire file will be terminated by a line consisting of a single #. 输出: Output will consist of one line for each code read containing the successor code or the words 'No Successor'. 样例输入 abaacb cbbaa # 样例输出 ababac No Successor

Description Consider the following 5 picture frames placed on an 9 x 8 array. ........ ........ ........ ........ .CCC.... EEEEEE.. ........ ........ ..BBBB.. .C.C.... E....E.. DDDDDD.. ........ ..B..B.. .C.C.... E....E.. D....D.. ........ ..B..B.. .CCC.... E....E.. D....D.. ....AAAA ..B..B.. ........ E....E.. D....D.. ....A..A ..BBBB.. ........ E....E.. DDDDDD.. ....A..A ........ ........ E....E.. ........ ....AAAA ........ ........ EEEEEE.. ........ ........ ........ ........ 1 2 3 4 5 Now place them on top of one another starting with 1 at the bottom and ending up with 5 on top. If any part of a frame covers another it hides that part of the frame below. Viewing the stack of 5 frames we see the following. .CCC.... ECBCBB.. DCBCDB.. DCCC.B.. D.B.ABAA D.BBBB.A DDDDAD.A E...AAAA EEEEEE.. In what order are the frames stacked from bottom to top? The answer is EDABC. Your problem is to determine the order in which the frames are stacked from bottom to top given a picture of the stacked frames. Here are the rules: 1. The width of the frame is always exactly 1 character and the sides are never shorter than 3 characters. 2. It is possible to see at least one part of each of the four sides of a frame. A corner shows two sides. 3. The frames will be lettered with capital letters, and no two frames will be assigned the same letter. Input Each input block contains the height, h (h<=30) on the first line and the width w (w<=30) on the second. A picture of the stacked frames is then given as h strings with w characters each. Your input may contain multiple blocks of the format described above, without any blank lines in between. All blocks in the input must be processed sequentially. Output Write the solution to the standard output. Give the letters of the frames in the order they were stacked from bottom to top. If there are multiple possibilities for an ordering, list all such possibilities in alphabetical order, each one on a separate line. There will always be at least one legal ordering for each input block. List the output for all blocks in the input sequentially, without any blank lines (not even between blocks). Sample Input 9 8 .CCC.... ECBCBB.. DCBCDB.. DCCC.B.. D.B.ABAA D.BBBB.A DDDDAD.A E...AAAA EEEEEE.. Sample Output EDABC

用c++解决Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. Input The first line contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1 ≤ S ≤ N ≤ 100, 1 ≤ M ≤ 100, V is real number, 0 ≤ V ≤ 103. For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2 ≤ rate ≤ 102, 0 ≤ commission ≤ 102. Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. Output If Nick can increase his wealth, output YES, in other case output NO.

最新推荐

recommend-type

毕设和企业适用springboot企业数据管理平台类及跨境电商管理平台源码+论文+视频.zip

毕设和企业适用springboot企业数据管理平台类及跨境电商管理平台源码+论文+视频
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Shell脚本进阶】:wc命令行数统计的高级用法及解决方案

![【Shell脚本进阶】:wc命令行数统计的高级用法及解决方案](https://static.coggle.it/diagram/Wf_r5VcFBgABR93J/thumbnail?mtime=1510053270529) # 摘要 本文首先介绍wc命令的基本使用和功能,旨在为读者提供一个理解文本行、单词、字节统计的基础。随后,深入探讨了wc命令的高级用法,包括对多个文件的统计与比较,与其他工具如grep和awk的结合使用,以及通过管道实现的高效数据处理。文章第三部分关注wc命令的性能优化和实用技巧,包括提升效率的执行方法和解决常见使用问题的策略。最后,文章探索了wc命令的替代工具与功
recommend-type

python编写一个程序,使得根据输入的起点和终点坐标值计算出坐标方位角

在Python中,我们可以使用Haversine公式来计算两个经纬度之间的方位角。首先,你需要安装`geopy`库,它提供了一个方便的方式来处理地理位置相关的操作。如果你还没有安装,可以使用`pip install geopy`命令。 下面是一个简单的示例程序,用于计算两个点之间的方位角: ```python from math import radians, cos, sin, asin, sqrt from geopy.distance import distance def calculate_bearing(start_point, end_point): # 将坐标转换
recommend-type

Achilles-2 原始压缩包内容解密

资源摘要信息:"achilles_2.orig.tar.gz" 该压缩包文件名为"achilles_2.orig.tar.gz",它遵循传统的命名规则,其中"orig"通常表示原始版本的软件包或文件。在这个上下文中,"achilles_2"很可能是指软件包的名称,而数字"2"则表示版本号。压缩文件扩展名".tar.gz"表明这是一个使用gzip进行压缩的tar归档文件。Tar是Unix和类Unix系统中用于将多个文件打包成一个文件的工具,而gzip是一种广泛用于压缩文件的工具,它使用了Lempel-Ziv编码(LZ77)算法以及32位CRC校验。 在IT领域,处理此类文件需要掌握几个关键知识点: 1. 版本控制与软件包命名:在软件开发和分发过程中,版本号用于标识软件的不同版本。这有助于用户和开发者追踪软件的更新、新功能、修复和安全补丁。常见的版本控制方式包括语义化版本控制(Semantic Versioning),它包括主版本号、次版本号和补丁号。 2. Tar归档工具:Tar是一个历史悠久的打包工具,它可以创建一个新的归档文件,或者将多个文件和目录添加到一个已存在的归档中。它可以与压缩工具(如gzip、bzip2等)一起使用来减小生成文件的大小,从而更方便地进行存储和传输。 3. Gzip压缩工具:Gzip是一种流行的文件压缩程序,它基于GNU项目,可以有效减小文件大小,常用于Unix和类Unix系统的文件压缩。Gzip通常用于压缩文本文件,但也能处理二进制文件和其他类型的文件。Gzip使用了LZ77算法以及用于减少冗余的哈夫曼编码,来达到较高的压缩比。 4. 文件格式与扩展名:文件扩展名通常用于标识文件类型,以便操作系统和用户可以识别文件的用途。在处理文件时,了解常见的文件扩展名(如.tar、.gz、.tar.gz等)是非常重要的,因为它们可以帮助用户识别如何使用和操作这些文件。 5. 文件传输和分发:压缩包是互联网上常见的文件传输形式之一。开发者和维护者使用压缩包来发布软件源代码或二进制文件,以便用户下载和安装。在处理下载的文件时,用户通常需要根据文件扩展名来解压和解包文件,以便能够访问或运行包内的文件。 总结来说,"achilles_2.orig.tar.gz"是一个包含了名为"achilles"的软件包的第二个版本的源代码压缩文件。要使用这个文件,用户需要使用支持.tar.gz格式的解压工具(如Linux系统中的tar命令或者图形用户界面工具如WinRAR),来解压和查看其中的内容。这样的处理过程涉及到软件版本管理、文件打包、压缩和解压等多个IT知识领域。