for i in range(len(shortest_path) - 1): path = get_path(shortest_path[i], shortest_path[i+1]) coordinates = [(loc.row, loc.column) for loc in path] for j in range(len(coordinates)): PATH.append(coordinates[j]) print(PATH*2)其中PATH*2什么效果
时间: 2024-03-27 11:42:03 浏览: 106
在这段代码中,PATH是一个列表,*2是将列表复制一次并将两个副本连接起来,生成一个新的列表。
例如,如果PATH=[(0,0),(0,1),(1,1)],则PATH*2将生成[(0,0),(0,1),(1,1),(0,0),(0,1),(1,1)]。即将原来的列表复制一遍,然后将两个副本连接在一起。
相关问题
File "D:\23101\比赛\光电赛\maze_car\maze.py", line 329, in <module> path = get_path(shortest_path[i], shortest_path[i+1]) IndexError: list index out of range
这个错误是由于你尝试访问列表中不存在的索引造成的。具体来说,在第 i 个循环中,你尝试访问 shortest_path[i+1] 索引,但是 shortest_path 列表中没有这个索引。
要解决这个问题,你需要检查列表索引的范围是否正确。在处理列表索引时,要确保所使用的索引值在列表范围内。你可以使用 Python 的内置函数 len() 来获取列表的长度,以此来检查使用的索引是否超出了列表的范围。此外,还要确保在使用列表索引时,列表中至少存在一个元素。
import pandas as pd import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.cluster import KMeans import os def dbscan(input_file): ## 纬度在前,经度在后 [latitude, longitude] columns = ['lat', 'lon'] in_df = pd.read_csv(input_file, sep=',', header=None, names=columns) # represent GPS points as (lat, lon) coords = in_df.as_matrix(columns=['lat', 'lon']) # earth's radius in km kms_per_radian = 6371.0086 # define epsilon as 0.5 kilometers, converted to radians for use by haversine # This uses the 'haversine' formula to calculate the great-circle distance between two points # that is, the shortest distance over the earth's surface # http://www.movable-type.co.uk/scripts/latlong.html epsilon = 0.5 / kms_per_radian # radians() Convert angles from degrees to radians db = DBSCAN(eps=epsilon, min_samples=15, algorithm='ball_tree', metric='haversine').fit(np.radians(coords)) cluster_labels = db.labels_ # get the number of clusters (ignore noisy samples which are given the label -1) num_clusters = len(set(cluster_labels) - set([-1])) print('Clustered ' + str(len(in_df)) + ' points to ' + str(num_clusters) + ' clusters') # turn the clusters in to a pandas series # clusters = pd.Series([coords[cluster_labels == n] for n in range(num_clusters)]) # print(clusters) kmeans = KMeans(n_clusters=1, n_init=1, max_iter=20, random_state=20) for n in range(num_clusters): # print('Cluster ', n, ' all samples:') one_cluster = coords[cluster_labels == n] # print(one_cluster[:1]) # clist = one_cluster.tolist() # print(clist[0]) kk = kmeans.fit(one_cluster) print(kk.cluster_centers_) def main(): path = './datas' filelist = os.listdir(path) for f in filelist: datafile = os.path.join(path, f) print(datafile) dbscan(datafile) if __name__ == '__main__': main()
这是一个 Python 代码,主要使用了 Pandas、NumPy、sklearn.cluster 等库实现了 DBSCAN 和 KMeans 聚类算法。代码读入了一个文件夹中的多个文件,每个文件都是 GPS 坐标点的经纬度信息,然后使用 DBSCAN 算法进行聚类,并且输出了聚类的个数。接着使用 KMeans 算法对每个聚类进行细分,最后输出每个聚类的中心点坐标。
阅读全文