不要用pytorch提供的内置模块,请写出Transformer完整代码
时间: 2023-02-11 20:47:04 浏览: 205
Transformer 是一种深度学习模型,用于处理序列数据。它由若干个组件组成,包括自注意力机制、前馈网络、层归一化等。下面是一个简化版的 Transformer 的代码实现:
```python
import torch
import torch.nn as nn
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, nhead, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.d_model = d_model
self.nhead = nhead
self.dropout = dropout
self.q_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.out = nn.Linear(d_model, d_model)
self.norm = nn.LayerNorm(d_model)
def forward(self, q, k, v, mask=None):
bsz = q.size(0)
q = self.q_linear(q).view(bsz, -1, self.nhead, self.d_model//self.nhead)
k = self.k_linear(k).view(bsz, -1, self.nhead, self.d_model//self.nhead)
v = self.v_linear(v).view(bsz, -1, self.nhead, self.d_model//self.nhead)
q = q.transpose(1,2)
k = k.transpose(1,2)
v = v.transpose(1,2)
scores = q @ k.transpose(-2,-1) / math.sqrt(self.d_model)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
attn = nn.Softmax(dim=-1)(scores)
attn = self.dropout(attn)
output = attn @ v
output = output.transpose(1,2).contiguous().view(bsz, -1, self.d_model)
output = self.out(output)
output = self.norm(output + x)
return output
class Transformer(nn.Module):
def __init__(self, d_model, nhead, num_layers, dropout=0.1):
super(Transformer, self).__init__()
self.d_model = d_model
self.nhead = nhead
self.num_layers = num_layers
阅读全文