帮我写出transformer pytorch版本的代码
时间: 2023-10-09 14:11:33 浏览: 153
好的,我可以为您提供transformer pytorch版本的代码。以下是一个简单的实现:
```python
import torch
import torch.nn as nn
class Transformer(nn.Module):
def __init__(self, num_layers, d_model, num_heads, d_ff, dropout):
super().__init__()
self.encoder_layers = nn.ModuleList([TransformerLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
self.decoder_layers = nn.ModuleList([TransformerLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
self.norm = nn.LayerNorm(d_model)
self.fc_out = nn.Linear(d_model, vocab_size)
self.embed_src = nn.Embedding(src_vocab_size, d_model)
self.embed_tgt = nn.Embedding(tgt_vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout)
self.pos_decoder = PositionalEncoding(d_model, dropout)
def forward(self, src, tgt, src_mask, tgt_mask):
src = self.embed_src(src)
tgt = self.embed_tgt(tgt)
src = self.pos_encoder(src)
tgt = self.pos_decoder(tgt)
for layer in self.encoder_layers:
src = layer(src, src_mask)
for layer in self.decoder_layers:
tgt = layer(tgt, src, tgt_mask, src_mask)
output = self.fc_out(self.norm(tgt))
return output
```
其中,`TransformerLayer`是一个包含注意力机制和前馈网络的模块,`PositionalEncoding`是一个将位置信息嵌入到输入张量中的模块。这个代码可以根据您的具体任务进行修改和扩展。
阅读全文