假设你是一个pytorch,请写出利用tensorbordX显示vgg16训练过程中每一个epoch的损失值和准确率。
时间: 2024-03-03 22:53:47 浏览: 83
好的,以下是一个利用tensorboardX显示VGG16训练过程中每一个epoch的损失值和准确率的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import models, datasets, transforms
from tensorboardX import SummaryWriter
# 创建tensorboard writer对象
writer = SummaryWriter('logs')
# 定义VGG16模型
model = models.vgg16(pretrained=True)
num_features = model.classifier[0].in_features
model.classifier = nn.Linear(num_features, 2)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 加载数据集
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageFolder('train', transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# 训练模型
for epoch in range(10):
running_loss = 0.0
correct = 0
total = 0
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 记录训练损失和准确率
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
epoch_loss = running_loss / len(train_loader)
epoch_acc = 100 * correct / total
# 将损失和准确率写入tensorboard
writer.add_scalar('Loss/train', epoch_loss, epoch)
writer.add_scalar('Accuracy/train', epoch_acc, epoch)
print('Epoch: {} | Loss: {:.4f} | Acc: {:.4f}'.format(epoch, epoch_loss, epoch_acc))
# 关闭tensorboard writer对象
writer.close()
```
在上述示例代码中,我们首先创建了一个tensorboard writer对象,然后定义了VGG16模型、损失函数和优化器,以及加载了训练数据集。在每个epoch中,我们记录了训练损失和准确率,并将它们写入tensorboard。最后,我们关闭了tensorboard writer对象。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![txt](https://img-home.csdnimg.cn/images/20241231045021.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)