写一个用pytorch,VGG16处理jaffe数据集的代码,用cpu,划分训练集,验证集和测试集,给出准确率图,损失图和混淆矩阵

时间: 2024-05-15 10:17:54 浏览: 214
ZIP

pytorch人脸表情识别数据集(2w8训练集+7k测试集)

好的,我来回答你的问题。以下是用pytorch和VGG16处理jaffe数据集的代码,给出了准确率图,损失图和混淆矩阵。 首先,导入所需的库: ``` import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import torchvision from torchvision import datasets, models, transforms import numpy as np import time import os import copy from sklearn.metrics import confusion_matrix ``` 然后,定义一些参数: ``` data_dir = "/path/to/jaffe/dataset" batch_size = 4 num_workers = 4 num_epochs = 25 input_size = 224 learning_rate = 0.001 ``` 接着,定义数据预处理: ``` data_transforms = { 'train': transforms.Compose([ transforms.Resize(input_size), transforms.RandomHorizontalFlip(), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]), 'val': transforms.Compose([ transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]), 'test': transforms.Compose([ transforms.Resize(input_size), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) } ``` 然后,加载数据集: ``` image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val', 'test']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=num_workers) for x in ['train', 'val', 'test']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val', 'test']} class_names = image_datasets['train'].classes ``` 接下来,定义VGG16模型: ``` model_ft = models.vgg16(pretrained=True) num_ftrs = model_ft.classifier[6].in_features model_ft.classifier[6] = nn.Linear(num_ftrs, len(class_names)) ``` 然后,定义损失函数和优化器: ``` criterion = nn.CrossEntropyLoss() optimizer_ft = optim.SGD(model_ft.parameters(), lr=learning_rate, momentum=0.9) ``` 接着,定义学习率调度器:(可选) ``` exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) ``` 然后,定义训练和测试函数: ``` def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 train_losses = [] val_losses = [] train_acc = [] val_acc = [] for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) for phase in ['train', 'val']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] if phase == 'train': train_losses.append(epoch_loss) train_acc.append(epoch_acc) else: val_losses.append(epoch_loss) val_acc.append(epoch_acc) print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:.4f}'.format(best_acc)) model.load_state_dict(best_model_wts) return model, train_losses, val_losses, train_acc, val_acc def test_model(model): model.eval() test_losses = [] test_acc = [] y_true = [] y_pred = [] with torch.no_grad(): for inputs, labels in dataloaders['test']: inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) y_true += labels.cpu().numpy().tolist() y_pred += preds.cpu().numpy().tolist() test_losses.append(loss.item() * inputs.size(0)) test_acc.append(torch.sum(preds == labels.data)) epoch_loss = sum(test_losses) / dataset_sizes['test'] epoch_acc = sum(test_acc).double() / dataset_sizes['test'] conf_mat = confusion_matrix(y_true, y_pred) print('Test Loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc)) print('Confusion Matrix:') print(conf_mat) return epoch_loss, epoch_acc, conf_mat ``` 最后,运行代码,得到准确率图,损失图和混淆矩阵: ``` device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_ft = model_ft.to(device) criterion = criterion.to(device) model_ft, train_losses, val_losses, train_acc, val_acc = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=num_epochs) test_loss, test_acc, conf_mat = test_model(model_ft) ``` 其中,train_losses、val_losses、train_acc和val_acc分别为训练集和验证集上的损失和准确率数组,test_loss、test_acc和conf_mat为测试集上的损失、准确率和混淆矩阵。 我们可以使用matplotlib绘制准确率图和损失图: ``` import matplotlib.pyplot as plt plt.plot(train_losses, label='Training loss') plt.plot(val_losses, label='Validation loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.show() plt.plot(train_acc, label='Training accuracy') plt.plot(val_acc, label='Validation accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() plt.show() ``` 混淆矩阵可以使用seaborn绘制: ``` import seaborn as sns sns.heatmap(conf_mat, annot=True, cmap='Blues', xticklabels=class_names, yticklabels=class_names) plt.xlabel('Predicted') plt.ylabel('Actual') plt.title('Confusion Matrix') plt.show() ``` 这样就完成了用pytorch和VGG16处理jaffe数据集的代码,并且给出了准确率图,损失图和混淆矩阵。
阅读全文

相关推荐

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

MNIST是一个包含60,000个训练样本和10,000个测试样本的标准化手写数字数据库。每个图像都是28x28像素的灰度图像。我们使用`DataLoader`进行批量加载,并使用`transforms.ToTensor()`将图像转换为PyTorch张量。 在...
recommend-type

PyTorch版YOLOv4训练自己的数据集—基于Google Colab

你需要将数据集分为训练集和验证集,并按照YOLOv4的要求格式化,通常包括类别标签、边界框坐标以及图像文件。 4. **配置训练参数**:在训练脚本中,你需要设置超参数,如学习率、批大小、训练轮数等。同时,要指定...
recommend-type

pytorch学习教程之自定义数据集

在PyTorch中,自定义数据集是深度学习模型训练的关键步骤,因为它允许你根据具体需求组织和处理数据。在本教程中,我们将探讨如何在PyTorch环境中创建自定义数据集,包括数据的组织、数据集类的定义以及使用`...
recommend-type

pytorch VGG11识别cifar10数据集(训练+预测单张输入图片操作)

该数据集被分为训练集和测试集,用于评估模型在图像分类任务上的性能。 在实现VGG11模型识别CIFAR-10数据集的过程中,我们首先需要定义VGG Block,这是一个包含多个卷积层、ReLU激活函数和最大池化层的序列。`vgg_...
recommend-type

用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

在本文中,我们将探讨如何使用PyTorch训练一个卷积神经网络(CNN)模型,针对MNIST数据集,并利用GPU加速计算。MNIST是一个包含手写数字图像的数据集,常用于入门级的深度学习项目。PyTorch是一个灵活且用户友好的...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。