手写数字识别pytorch

时间: 2023-05-14 19:04:29 浏览: 26
可以使用PyTorch来实现手写数字识别。以下是一个简单的示例代码: ``` import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载MNIST数据集 train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) model = Net() # 定义优化器和损失函数 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) criterion = nn.CrossEntropyLoss() # 训练模型 for epoch in range(10): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() # 测试模型 test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), accuracy)) ``` 这个代码使用了一个简单的卷积神经网络来识别手写数字。你可以通过调整模型的结构和超参数来提高模型的性能。

相关推荐

### 回答1: minist手写数字识别pytorch是一种基于PyTorch框架的手写数字识别模型。该模型可以识别到9的手写数字,并且在训练集和测试集上都有很好的表现。它的实现过程包括数据预处理、模型构建、模型训练和模型测试等步骤。通过使用PyTorch框架,可以方便地实现深度学习模型,并且可以利用GPU加速训练过程,提高模型的训练效率。 ### 回答2: 在现代机器学习的技术中,手写数字识别是一个相对简单的问题。然而,它的理论和技术都是非常有价值的。这个问题的目标是给机器一个图像,让它预测图像上的数字。这个任务对于许多现实世界的应用非常有用,例如自动识别支票或信用卡上的数字等。 Minist手写数字识别是一个流行的经典问题,它的目标是识别0-9的手写数字。这项任务已经在经典计算机视觉算法的研究中经常出现,被广泛使用,并且是许多机器学习算法和模型的基础。在这里,我们将使用PyTorch来实现这个任务。 首先,需要下载Minist数据集并准备数据。Minist数据集包含了70,000张28x28的灰度图像,每张图像代表了0到9之间的一个数字。数据集被分成了两个部分:60,000张图像用于训练,剩下的10,000张图像用于测试。 我们将使用PyTorch来构建一个卷积神经网络(CNN)来解决这个问题。这个CNN包括两个卷积层和两个全连接层。卷积层用于提取图像特征,它们通过卷积和池化操作将图像转换为低维的特征表示。全连接层则将这些特征映射到数字标签。 在训练CNN之前,我们需要对图像进行预处理和标准化。然后,我们将定义损失函数,优化器和学习率计划,以便在训练期间或在测试期间为CNN提供足够的准确性。 最后,我们将使用测试数据集来评估CNN的性能。为了更好的评估模型的性能,我们还可以使用k-fold交叉验证技术,以确保我们的CNN是健壮和可靠的。 总而言之,使用PyTorch来实现Minist手写数字识别是一个非常有趣和有收获的挑战。它不仅可以帮助我们了解机器学习中的经典问题,还可以帮助我们掌握深度学习技术和PyTorch的应用。 ### 回答3: Minist手写数字识别是深度学习领域中一个经典的问题。它的主要目标是通过机器学习的方法识别并分类手写数字。传统的机器学习方法使用手动设计的特征,但这种方法在处理高维、非线性数据时效果不理想。近年来,深度学习的发展使得自动学习特征成为可能,从而为Minist手写数字识别提供了新的解决方案。 在深度学习领域中,PyTorch是一种非常流行的框架,具有很强的灵活性和扩展性,被广泛用于各种机器学习问题的解决。PyTorch可以支持多种神经网络模型,包括卷积神经网络(CNN),循环神经网络(RNN)等。在Minist手写数字识别中,最常用的是CNN模型,因为CNN模型具有非常好的图像处理能力。而PyTorch中的CNN模型则可以通过简单的代码实现,下面是一个简单的CNN模型的代码: class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) 这个CNN模型包括两个卷积层(conv1和conv2)和两个全连接层(fc1和fc2)。其中,卷积层和全连接层都是通过PyTorch中的类来定义的。在forward()函数中,卷积和像素池化操作被串连在一起,用于从图像中提取特征。这些特征被展平并传递到全连接层中进行分类。 在PyTorch中,使用Minist手写数字数据集进行训练非常简单,因为PyTorch内置了MNIST数据集,并且提供了数据加载和预处理函数。使用该数据集可以轻松地训练CNN模型并进行手写数字识别。 综上所述,基于PyTorch实现Minist手写数字识别的CNN模型是一种相对容易的方法。使用PyTorch的灵活性和扩展性,可以定义并训练高性能的模型,并且可以通过各种方式来提高模型的准确性。该模型还可以与其他深度学习技术结合使用,例如迁移学习和增强学习,以进一步提高性能。
你可以使用ResNet网络来进行手写数字识别。根据你提供的代码,你已经创建了一个ResNet-18模型,并将输入图片的通道数从3修改为1,以适应MNIST数据集的灰度图像。接下来,你可以使用这个修改后的模型进行手写数字识别。 首先,你需要准备好MNIST数据集。你可以使用PyTorch提供的torchvision库来加载MNIST数据集。然后,你可以使用torchvision.transforms模块中的transforms.Compose函数来定义数据预处理的操作,例如将图像转换为张量、归一化等。接着,你可以使用torch.utils.data.DataLoader来创建一个数据加载器,以便在训练和测试过程中加载数据。 在训练过程中,你可以使用torch.optim模块中的适当的优化器(如SGD或Adam)来定义优化算法,并使用torch.nn模块中的交叉熵损失函数来计算损失。然后,你可以使用模型的forward方法来计算输出,并将输出与标签进行比较以计算损失。最后,你可以使用优化器的backward方法来计算梯度,并使用优化器的step方法来更新模型的参数。 在测试过程中,你可以使用模型的forward方法来计算输出,并使用torch.max函数来获取每个样本的预测类别。然后,你可以将预测类别与真实类别进行比较,并计算准确率。 综上所述,你可以使用ResNet-18模型对手写数字进行识别。通过修改模型的输入通道数,你可以适应MNIST数据集的灰度图像。然后,你可以使用训练和测试过程来训练和评估模型。希望这个回答对你有帮助![1][3]
你可以使用PyTorch来实现CNN(卷积神经网络)手写数字识别。以下是一个简单的示例代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(64*7*7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.maxpool(x) x = self.conv2(x) x = self.relu(x) x = self.maxpool(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x # 加载MNIST数据集 train_dataset = datasets.MNIST(root='data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='data', train=False, transform=transforms.ToTensor()) # 定义训练和测试数据加载器 batch_size = 64 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 初始化模型和优化器 model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) for epoch in range(num_epochs): for batch_idx, (data, targets) in enumerate(train_loader): data = data.to(device) targets = targets.to(device) # 前向传播 scores = model(data) loss = criterion(scores, targets) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item():.4f}') # 在测试集上评估模型 def test_model(model, test_loader): model.eval() num_correct = 0 num_samples = 0 with torch.no_grad(): for data, targets in test_loader: data = data.to(device) targets = targets.to(device) scores = model(data) _, predictions = scores.max(1) num_correct += (predictions == targets).sum() num_samples += predictions.size(0) accuracy = num_correct / num_samples print(f'Test Accuracy: {accuracy*100:.2f}%') test_model(model, test_loader) 这是一个简单的CNN模型,可用于MNIST手写数字识别任务。你可以根据需要调整模型结构和超参数来提高准确率。
好的,下面是一个简单的示例代码,使用PyTorch实现MNIST手写数字识别: python import torch import torch.nn as nn import torch.optim as optim import torchvision from torchvision import datasets, transforms # 加载数据集 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) trainset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) testset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.fc1 = nn.Linear(64*5*5, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = x.view(-1, 64*5*5) x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) net = Net() # 定义优化器和损失函数 optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5) criterion = nn.NLLLoss() # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) 在这个示例中,我们首先使用torchvision加载MNIST数据集,并对数据进行标准化处理。然后我们定义了一个包含两个卷积层和两个全连接层的神经网络,使用ReLU作为激活函数,并使用负对数似然损失作为损失函数,优化器使用SGD。接着我们训练模型并测试模型的准确率。
以下是使用PyTorch实现LeNet-5手写数字识别的示例代码: 1. 导入所需的库 import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.datasets import MNIST 2. 定义LeNet-5模型 class LeNet5(nn.Module): def __init__(self): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1) self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1) self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(16*4*4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16*4*4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x 3. 定义训练函数 def train(model, train_loader, criterion, optimizer, device): model.train() running_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader, 0): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() epoch_loss = running_loss / len(train_loader) return epoch_loss 4. 定义测试函数 def test(model, test_loader, criterion, device): model.eval() correct = 0 total = 0 running_loss = 0.0 with torch.no_grad(): for data in test_loader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() epoch_loss = running_loss / len(test_loader) epoch_accuracy = 100 * correct / total return epoch_loss, epoch_accuracy 5. 加载数据集并进行数据预处理 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_data = MNIST(root='data', train=True, download=True, transform=transform) test_data = MNIST(root='data', train=False, download=True, transform=transform) train_loader = DataLoader(train_data, batch_size=64, shuffle=True) test_loader = DataLoader(test_data, batch_size=64, shuffle=False) 6. 设置超参数并进行训练 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = LeNet5().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters()) num_epochs = 10 for epoch in range(num_epochs): train_loss = train(model, train_loader, criterion, optimizer, device) test_loss, test_accuracy = test(model, test_loader, criterion, device) print(f"Epoch {epoch+1}/{num_epochs} - train_loss: {train_loss:.4f} - test_loss: {test_loss:.4f} - test_accuracy: {test_accuracy:.2f}%") 运行以上代码后,即可对MNIST手写数字进行识别。
你好,以下是mnist手写数字识别的PyTorch代码: import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # 定义数据预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((.5,), (.5,))]) # 加载数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) # 定义神经网络 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=.001, momentum=.9) # 训练网络 for epoch in range(2): # 多次循环数据集 running_loss = . for i, data in enumerate(trainloader, ): # 获取输入 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 正向传播,反向传播,优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 打印统计信息 running_loss += loss.item() if i % 200 == 1999: # 每200个小批量数据打印一次 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = . print('Finished Training') # 测试网络 correct = total = with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size() correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) 希望对你有所帮助!
下面是一个简单的 PyTorch 实现 MNIST 手写数字识别的代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义超参数 batch_size = 64 learning_rate = 0.01 num_epochs = 10 # 下载和加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True) # 创建数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.pool = nn.MaxPool2d(2) self.fc = nn.Linear(320, 10) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 320) x = self.fc(x) return x # 实例化模型和损失函数 model = Net() criterion = nn.CrossEntropyLoss() # 使用随机梯度下降优化器 optimizer = optim.SGD(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 将数据加载到 GPU 中 images = images.cuda() labels = labels.cuda() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每 100 个批次输出一次日志信息 if (i + 1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item())) # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: # 将数据加载到 GPU 中 images = images.cuda() labels = labels.cuda() # 计算输出并获取预测结果 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计正确预测的数量 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total)) 这个代码使用了一个简单的卷积神经网络,包括两个卷积层、两个最大池化层和一个全连接层。训练过程中使用随机梯度下降优化器,测试过程中计算模型的准确率。
以下是一个基于PyTorch的手写数字识别代码。这个代码使用的是一个基于MNIST数据集的卷积神经网络模型。 python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torchvision.datasets import MNIST from torch.utils.data import DataLoader # 定义卷积神经网络模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 16, kernel_size=5, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(2)) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=5, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(2)) self.fc = nn.Linear(7 * 7 * 32, 10) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = out.view(out.size(0), -1) out = self.fc(out) return out # 加载数据集 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_data = MNIST(root='./data', train=True, transform=transform, download=True) train_loader = DataLoader(train_data, batch_size=100, shuffle=True) # 定义模型、损失函数和优化器 model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if (i+1) % 100 == 0: print('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' % (epoch+1, 10, i+1, len(train_data)//100, running_loss/100)) running_loss = 0.0 # 保存模型 torch.save(model.state_dict(), 'model.pth') 在训练完模型后,我们可以使用以下代码来测试我们的模型: python import torch import torchvision.transforms as transforms from PIL import Image # 加载模型 model = CNN() model.load_state_dict(torch.load('model.pth')) # 图像预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载测试图像 image_path = 'test_image.png' image = Image.open(image_path).convert('L') image = transform(image) image = image.unsqueeze(0) # 使用模型进行预测 output = model(image) _, predicted = torch.max(output.data, 1) # 输出预测结果 print('Predicted Digit:', predicted.item()) 在这个代码中,我们将一张手写数字的图像作为输入,使用我们训练好的模型来进行预测,并输出预测结果。
要使用PyTorch对MNIST手写数字图像进行分类,你可以按照以下步骤进行操作: 1. 首先,使用PyTorch定义ResNet50网络模型。ResNet50是一种深度卷积神经网络,适用于图像分类任务。 2. 接下来,使用PyTorch加载MNIST数据集。PyTorch提供了方便的数据加载工具,你可以使用torchvision.datasets.MNIST函数加载MNIST数据集。如果是第一次运行代码,PyTorch会自动下载数据集。 3. 在加载数据集之后,你可以对数据进行一些预处理操作。例如,可以使用torchvision.transforms.Compose函数将多个转换操作组合在一起,比如将图像转换为Tensor,并进行标准化。 4. 接着,你可以创建训练数据加载器和测试数据加载器。可以使用torch.utils.data.DataLoader函数来创建数据加载器。训练数据加载器用于训练模型,测试数据加载器用于评估模型的性能。你可以指定批量大小、是否打乱数据等参数。 5. 然后,你可以使用定义好的网络模型、数据加载器和损失函数,进行训练过程。训练过程中,可以使用优化器(如SGD或Adam)来更新模型的参数,并计算损失值。训练过程中可以显示损失值的变化情况。 总结起来,对于MNIST手写数字图像分类的PyTorch代码,你需要定义ResNet50网络模型,加载MNIST数据集,进行数据预处理,创建训练和测试数据加载器,并进行训练过程。 请注意,上述步骤只是一个大致的框架,具体的代码实现可能会有所不同。你可以根据自己的需求和实际情况对代码进行调整和修改。123 #### 引用[.reference_title] - *1* [Resnet50卷积神经网络训练MNIST手写数字图像分类 Pytorch训练代码](https://download.csdn.net/download/baidu_36499789/87418795)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [用PyTorch实现MNIST手写数字识别(非常详细)](https://blog.csdn.net/sxf1061700625/article/details/105870851)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
PyTorch是一个开源的机器学习框架,可以用于构建深度学习模型。手写数字识别是一个常见的机器学习任务,可以使用PyTorch来实现。 首先,你需要准备训练和测试数据集。在PyTorch中,可以使用TorchVision库来加载和预处理数据。通过使用TorchVision的transforms模块,你可以对图像进行各种处理,比如转换为张量、裁剪或标准化。\[1\] 接下来,你可以使用TorchVision提供的MNIST数据集,它包含了大量的手写数字图像和对应的标签。你可以使用torchvision.datasets.MNIST来加载数据集,并使用transforms.Compose来组合多个数据处理操作。\[3\] 然后,你可以定义一个神经网络模型来进行手写数字识别。你可以使用PyTorch的torch.nn模块来构建模型。可以选择使用卷积神经网络(CNN)来提取图像特征,并使用全连接层进行分类。你可以定义一个继承自torch.nn.Module的类,并在其中定义模型的结构和前向传播方法。 在训练过程中,你可以使用PyTorch的torch.optim模块来选择优化算法,并使用torch.nn模块中的损失函数来计算模型的损失。通过迭代训练数据集,不断调整模型的参数,使得模型能够更好地预测手写数字。 最后,你可以使用训练好的模型对测试数据进行预测,并评估模型的性能。可以使用torch.utils.data.DataLoader来加载测试数据集,并使用模型的forward方法来进行预测。可以使用准确率等指标来评估模型的性能。 综上所述,你可以使用PyTorch来实现手写数字识别任务。通过加载和预处理数据集,定义模型结构,选择优化算法和损失函数,迭代训练数据集,最终得到一个能够准确预测手写数字的模型。 #### 引用[.reference_title] - *1* *2* [使用Pytorch实现手写数字识别](https://blog.csdn.net/Jennifer_Love_Frank/article/details/120162483)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [用PyTorch实现MNIST手写数字识别(非常详细)](https://blog.csdn.net/sxf1061700625/article/details/105870851)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
好的,以下是一段 PyTorch 实现的手写数字识别的代码: python import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms # 定义网络结构 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4*4*50, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4*4*50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) # 加载数据集,进行数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = datasets.MNIST('~/pytorch_data/mnist/', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('~/pytorch_data/mnist/', train=False, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) # 初始化网络,定义损失函数和优化器 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练网络 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999:
PyTorch是一种基于Python的深度学习框架,可以用于训练神经网络并实现各种机器学习任务,包括手写数字识别。下面是一个简单的PyTorch手写数字识别的示例: 首先,我们需要导入需要的库和模块: python import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision import datasets, transforms 然后,我们定义一个类来构建我们的神经网络模型。在这个例子中,我们使用一个简单的卷积神经网络(CNN)模型: python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) 接下来,我们设置一些超参数并加载MNIST数据集: python batch_size = 64 learning_rate = 0.01 momentum = 0.5 train_dataset = datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data/', train=False, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) 然后,我们实例化我们的模型和优化器: python model = Net() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum) 接下来,我们定义训练和测试函数: python def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = nn.functional.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0])) def test(): model.eval() test_loss = 0 correct = 0 for data, target in test_loader: data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += nn.functional.nll_loss(output, target, size_average=False).data[0] pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) 最后,我们开始训练和测试我们的模型: python for epoch in range(1, 10): train(epoch) test() 这个示例代码训练了一个简单的CNN模型来对MNIST数据集中的手写数字进行分类。在训练了10个epoch之后,模型的测试准确率约为98%左右。你也可以尝试调整超参数和网络结构来改进模型的性能。
好的,以下是一个简单的PyTorch手写数字识别代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义网络结构 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 定义训练参数 batch_size = 64 learning_rate = 0.01 momentum = 0.5 epochs = 10 # 加载数据集 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) # 定义模型和优化器 model = Net() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum) # 训练模型 for epoch in range(epochs): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = nn.functional.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 测试模型 model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += nn.functional.nll_loss(output, target, size_average=False).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) 这个代码使用了PyTorch深度学习框架来训练一个手写数字识别模型。我们使用了MNIST数据集,它包含了大量的手写数字图像和对应的标签。我们定义了一个卷积神经网络模型,使用了两个卷积层和两个全连接层。我们使用SGD优化器来训练模型,并使用nll_loss()方法来计算损失。最后,我们使用argmax()方法来预测测试集,并使用sum()方法来计算准确率。

最新推荐

Pytorch实现的手写数字mnist识别功能完整示例

主要介绍了Pytorch实现的手写数字mnist识别功能,结合完整实例形式分析了Pytorch模块手写字识别具体步骤与相关实现技巧,需要的朋友可以参考下

pytorch 利用lstm做mnist手写数字识别分类的实例

今天小编就为大家分享一篇pytorch 利用lstm做mnist手写数字识别分类的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

javascript $.each用法例子

$Each 是一个常见的 JavaScript 库或框架中的方法,用于迭代数组或对象的元素,并生成相应的 HTML 或其他内容。

厦门大数据比赛.zip

比赛项目源码

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

javascript 中字符串 变量

在 JavaScript 中,字符串变量可以通过以下方式进行定义和赋值: ```javascript // 使用单引号定义字符串变量 var str1 = 'Hello, world!'; // 使用双引号定义字符串变量 var str2 = "Hello, world!"; // 可以使用反斜杠转义特殊字符 var str3 = "It's a \"nice\" day."; // 可以使用模板字符串,使用反引号定义 var str4 = `Hello, ${name}!`; // 可以使用 String() 函数进行类型转换 var str5 = String(123); //

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

css怎么写隐藏下拉列表

您可以使用 CSS 中的 display 属性来隐藏下拉列表。具体方法是: 1. 首先,在 HTML 中找到您想要隐藏的下拉列表元素的选择器。例如,如果您的下拉列表元素是一个 select 标签,则可以使用以下选择器:`select { }` 2. 在该选择器中添加 CSS 属性:`display: none;`,即可将该下拉列表元素隐藏起来。 例如,以下是一个隐藏下拉列表的 CSS 代码示例: ```css select { display: none; } ``` 请注意,这将隐藏所有的 select 元素。如果您只想隐藏特定的下拉列表,请使用该下拉列表的选择器来替代 sel