% 读入数据并进行预处理 data = [0.1, 0.2, 0.3, 0.1; 0.3, 0.2, 0.1, 0.2; 0.5, 0.6, 0.5, 0.4]; logData = log(data); ageMean = mean(data, 2); timeMean = mean(data, 1); % 建立模型 k = 1.5; % 设定初值 gamma = logData - ageMean * ones(1, length(timeMean)) - k * ones(length(ageMean), 1) * timeMean; phi = mean(gamma, 2); kappa = logData - ageMean * ones(1, length(timeMean)) - phi * ones(length(ageMean), 1) - k * ones(length(ageMean), 1) * timeMean; % 对 kappa 进行标准化后的奇异值分解 [U, S, V] = svd(zscore(kappa, [], 2)); K = 3; % 选择前 K 个主成分 uk = U(:, 1:K); sk = S(1:K, 1:K); vk = V(:, 1:K); kappaNew = uk * sk * vk'; phiNew = mean(kappaNew, 2); gammaNew = kappaNew - phiNew * ones(1, length(timeMean)); % 参数估计和预测 y = reshape(logData - phi * ones(1, length(timeMean)), 1, []); x(:, 1) = reshape(gammaNew, 1, []); for i = 1:K x(:, i+1) = (U(:, i)' * (zscore(logData, [], 2) - phi * ones(1, length(timeMean))))'; end b = x \ y; futureTime = [1:2]' + timeMean(end); % 对未来年份数据进行预测(2023, 2024年) ages = [1:size(data, 1)]'; logDataPred = repmat(phiNew, [1, length(futureTime)]) + gammaNew * k + ageMean * ones(1, length(futureTime)) + [ones(size(ages)), zscore(logData, [], 2)' * U(:, 1:K)] * b; dataPred = exp(logDataPred); % 输出结果 disp("原始数据:"); disp(data); disp("拟合数据:"); disp(dataPred);存在错误的地方与改正后的代码
时间: 2024-03-02 15:53:40 浏览: 65
这段代码的功能是使用主成分分析建立一个预测模型,并对未来两年的数据进行预测。但是这段代码存在一些错误,具体如下:
1. 在对数据进行标准化后,奇异值分解的对象应该是标准化后的 kappa,而不是 gammaNew。因为 gammaNew 已经被处理过,可能不满足标准化的要求。
2. 在对新的数据进行预测时,应该使用 b 的转置与特征矩阵相乘,而不是使用 b 与特征矩阵相乘。
下面是修改后的代码:
```
% 读入数据并进行预处理
data = [0.1, 0.2, 0.3, 0.1; 0.3, 0.2, 0.1, 0.2; 0.5, 0.6, 0.5, 0.4];
logData = log(data);
ageMean = mean(data, 2);
timeMean = mean(data, 1);
% 建立模型
k = 1.5; % 设定初值
gamma = logData - ageMean * ones(1, length(timeMean)) - k * ones(length(ageMean), 1) * timeMean;
phi = mean(gamma, 2);
kappa = logData - ageMean * ones(1, length(timeMean)) - phi * ones(length(ageMean), 1) - k * ones(length(ageMean), 1) * timeMean;
% 对 kappa 进行标准化后的奇异值分解
[U, S, V] = svd(zscore(kappa, [], 2));
K = 3; % 选择前 K 个主成分
uk = U(:, 1:K);
sk = S(1:K, 1:K);
vk = V(:, 1:K);
kappaNew = uk * sk * vk';
phiNew = mean(kappaNew, 2);
gammaNew = kappaNew - phiNew * ones(1, length(timeMean));
% 参数估计和预测
y = reshape(logData - phi * ones(1, length(timeMean)), 1, []);
x(:, 1) = reshape(gammaNew, 1, []);
for i = 1:K
x(:, i+1) = (U(:, i)' * (zscore(kappa, [], 2)))';
end
b = x \ y';
% 对未来年份数据进行预测(2023, 2024年)
futureTime = [1:2]' + timeMean(end);
ages = [1:size(data, 1)]';
newData = zscore([logData, log(dataPred)], [], 2);
logDataPred = repmat(phiNew, [1, length(futureTime)]) + gammaNew * k + ageMean * ones(1, length(futureTime)) + [ones(size(ages)), newData(:, K+1:end)] * b';
dataPred = exp(logDataPred);
% 输出结果
disp("原始数据:");
disp(data);
disp("拟合数据:");
disp(dataPred);
```
阅读全文