请详细解释DETR的decoder过程,必要可以给出代码或者图片来解释
时间: 2023-03-11 10:53:52 浏览: 214
详细介绍mux/decoder/delector文档
DETR(对抗性变换检测)的解码器过程是一种在计算机视觉任务中用于检测物体的技术。它使用一个可以并行计算的非常深的神经网络,能够更快地检测出图像中的多个物体。解码器是一个编码器-解码器网络,它接收输入图像,然后编码它,以提取该图像的特征,然后给出检测结果。解码器的代码如下:class DETRDecoder(nn.Module):
def __init__(self, num_classes, num_queries):
super().__init__()
self.num_queries = num_queries
self.cls_embed = nn.Linear(num_classes, num_queries)
self.bbox_embed = nn.Linear(4, num_queries)
self.query_embed = nn.Linear(256, num_queries)
self.cls_logits = nn.Linear(num_queries, num_classes)
self.bbox_delta = nn.Linear(num_queries, 4)
def forward(self, features):
# query embedding
query = self.query_embed(features) # (B, num_queries, 256)
query = query.mean(dim=1) # (B, num_queries)
# class embedding
cls_embed = self.cls_embed.weight # (num_classes, num_queries)
cls_logits = torch.einsum('bq,cq->bc', [query, cls_embed]) # (B, num_classes)
# bbox embedding
bbox_embed = self.bbox_embed.weight # (4, num_queries)
bbox_delta = torch.einsum('bq,ab->ba', [query, bbox_embed]) # (B, 4)
return {'cls_logits': cls_logits, 'bbox_delta': bbox_delta}
阅读全文