from skimage.morphology import skeletonize_3d from skimage import data # Load the 3D data points data = data.binary_blobs(length=100, blob_size_fraction=0.1, n_dim=3) # Convert the data points to a binary image binary_image = data.astype(bool) # Generate the distance map distance_map = ndimage.distance_transform_edt(binary_image) # Threshold the distance map thresholded_distance_map = (distance_map > 0) & (distance_map < 10) # Skeletonize the thresholded distance map skeleton = skeletonize_3d(thresholded_distance_map)对这段代码采用matplotlib进行可视化
时间: 2024-02-29 21:51:38 浏览: 186
好的,您可以尝试使用以下代码来可视化这段代码生成的三维骨架图像:
```python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Plot the binary image
x, y, z = binary_image.nonzero()
ax.scatter(x, y, z, zdir='z', c='red')
# Plot the skeleton
verts, faces, _, _ = measure.marching_cubes_lewiner(skeleton, 0)
mesh = Poly3DCollection(verts[faces], alpha=0.1)
face_color = [0.5, 0.5, 1]
mesh.set_facecolor(face_color)
ax.add_collection3d(mesh)
ax.set_xlim(0, binary_image.shape[0])
ax.set_ylim(0, binary_image.shape[1])
ax.set_zlim(0, binary_image.shape[2])
plt.show()
```
这段代码使用了matplotlib库中的3D可视化功能,将原始的二进制图像和骨架图像在三维空间中显示出来。其中,红色的点表示二进制图像中的非零点,蓝色的线条表示骨架图像。
阅读全文