X_train = np.array(pd.DataFrame(X_train).drop(outliers,axis=0)) y_train = np.array(pd.Series(y_train).drop(outliers,axis=0))详细解释每一句代码
时间: 2024-06-05 12:12:00 浏览: 286
1. `X_train = np.array(pd.DataFrame(X_train).drop(outliers,axis=0))`: 这行代码的作用是将 `X_train` 数据转换为 NumPy 数组并删除 `outliers` 中包含的行。具体来说,先使用 `pd.DataFrame(X_train)` 将 `X_train` 转换为 Pandas DataFrame 对象,然后使用 `drop` 方法删除包含在 `outliers` 列表中的行,最后使用 `np.array` 将结果转换为 NumPy 数组。
2. `y_train = np.array(pd.Series(y_train).drop(outliers,axis=0))`: 这行代码的作用与第一行类似,只不过是针对目标变量 `y_train` 进行操作。先使用 `pd.Series(y_train)` 将 `y_train` 转换为 Pandas Series 对象,然后使用 `drop` 方法删除包含在 `outliers` 列表中的行,最后使用 `np.array` 将结果转换为 NumPy 数组。
总的来说,这两行代码的目的是在训练数据中删除掉不符合预期的、可能会对模型训练产生负面影响的离群值。
相关问题
修正代码 for k in range(self.n_fold): est=self.init_estimator() train_id, val_id=cv[k] x=pd.DataFrame(x) y=pd.DataFrame(y) # x_train, x_test = x.iloc[train_id], x.iloc[test_id] # y_train, y_test = y.iloc[train_id], y.iloc[test_id] # print(x[train_id]) x_train= x.iloc[train_id] y_train= y.iloc[train_id] est.fit(x_train, y_train) x_proba=est.predict_proba(x.iloc[val_id]) print(x_proba) print(x_probas[val_id]) y_pre=est.predict(x.iloc[val_id]) acc=accuracy_score(y.iloc[val_id],y_pre) f1=f1_score(y.iloc[val_id],y_pre,average="macro") LOGGER_2.info("{}, n_fold{},Accuracy={:.4f}, f1_macro={:.4f}".format(self.name,k,acc,f1)) x_probas[val_id]=x_proba
修正后的代码应该是这样的:
```
for k in range(self.n_fold):
est = self.init_estimator()
train_id, val_id = cv[k]
x = pd.DataFrame(x)
y = pd.DataFrame(y)
x_train = x.iloc[train_id]
y_train = y.iloc[train_id]
est.fit(x_train, y_train)
x_proba = est.predict_proba(x.iloc[val_id])
print(x_proba)
print(x_probas[val_id])
y_pre = est.predict(x.iloc[val_id])
acc = accuracy_score(y.iloc[val_id], y_pre)
f1 = f1_score(y.iloc[val_id], y_pre, average="macro")
LOGGER_2.info("{}, n_fold{},Accuracy={:.4f}, f1_macro={:.4f}".format(self.name, k, acc, f1))
x_probas[val_id] = x_proba
```
在原有代码的基础上,主要修改了以下两点:
1. 将 `x`、`y` 转化为 DataFrame 类型。
2. 将 `x_train` 和 `y_train` 的赋值方式修改为 `x_train = x.iloc[train_id]`、`y_train = y.iloc[train_id]`,以保证对应行的数据匹配。
X_train = pd.read_csv("C:/Users/hp/Desktop/X_trainA.csv") y_train = pd.read_csv("C:/Users/hp/Desktop/y_trainA.csv") y_train = y_train.values.ravel() X_test = pd.read_csv("C:/Users/hp/Desktop/X_testA.csv") y_test = pd.read_csv("C:/Users/hp/Desktop/y_testA.csv") y_test = y_test.values.ravel() rf = RandomForestClassifier(max_depth=None, min_samples_leaf=4, min_samples_split=10, n_estimators=10, random_state=42) rf.fit(X_train, y_train) # 计算Shap值 explainer = shap.KernelExplainer(rf) shap_values = explainer.shap_values(X_train) # 可视化特征重要性 shap.summary_plot(shap_values, X_train, plot_type="bar") print(X_train, y_train) print(shap_values) import numpy as np shap_values = np.array(shap_values) shap_values= shap_values.reshape((2*105, 16)) df = pd.DataFrame(shap_values) df.to_excel('shap3.xlsx', index=False)有什么问题
这段代码的功能是使用随机森林模型对数据进行训练,并通过shap库计算每个特征对模型预测的影响,最后将结果保存到Excel文件中。但是代码中存在一些潜在问题:
1. 在计算Shap值时,需要指定训练集作为参数,但是代码中使用的是测试集:
```python
shap_values = explainer.shap_values(X_train)
```
应该改为:
```python
shap_values = explainer.shap_values(X_test)
```
2. 在将shap_values写入Excel文件之前,需要将其转换为numpy数组,但是在代码中已经将其转换为列表了,所以需要将以下代码:
```python
import numpy as np
shap_values = np.array(shap_values)
```
改为:
```python
shap_values = np.asarray(shap_values)
```
3. 在将shap_values写入Excel文件之前,需要将其reshape成正确的形状,但是代码中reshape的形状不正确:
```python
shap_values= shap_values.reshape((2*105, 16))
```
应该改为:
```python
shap_values= shap_values.reshape((len(X_test), X_test.shape[1]))
```
4. 代码中没有对导入的库进行说明,应该添加注释或说明文档,以便其他人阅读和理解代码。
阅读全文
相关推荐
















