GWO多目标算法程序
时间: 2023-07-23 14:07:12 浏览: 86
以下是GWO多目标算法的Python代码示例:
```
import numpy as np
import math
import copy
def GWO_multi_obj_search(objective_func, lb, ub, dim, search_agents_no, max_iter):
# 初始化灰狼种群
alpha_pos = np.zeros(dim)
beta_pos = np.zeros(dim)
delta_pos = np.zeros(dim)
alpha_score = float("inf")
beta_score = float("inf")
delta_score = float("inf")
pos_list = np.zeros((search_agents_no, dim))
for i in range(search_agents_no):
pos_list[i, :] = lb + (ub - lb) * np.random.rand(dim)
# 开始迭代
for iter_count in range(max_iter):
for i in range(search_agents_no):
# 计算适应值
current_pos = pos_list[i, :]
fitness = objective_func(current_pos)
obj_len = len(fitness)
if obj_len != 2:
print("Error: Objective function should return two values!")
return None, None
# 更新alpha、beta、delta
if fitness[0] < alpha_score and fitness[1] < alpha_score:
delta_pos = copy.copy(beta_pos)
delta_score = copy.copy(beta_score)
beta_pos = copy.copy(alpha_pos)
beta_score = copy.copy(alpha_score)
alpha_pos = copy.copy(current_pos)
alpha_score = copy.copy(fitness[0])
elif fitness[0] < beta_score and fitness[1] < beta_score:
delta_pos = copy.copy(beta_pos)
delta_score = copy.copy(beta_score)
beta_pos = copy.copy(current_pos)
beta_score = copy.copy(fitness[0])
elif fitness[0] < delta_score and fitness[1] < delta_score:
delta_pos = copy.copy(current_pos)
delta_score = copy.copy(fitness[0])
# 更新灰狼位置
a = 2 - iter_count * (2 / max_iter) # 匀速下降参数
for i in range(search_agents_no):
r1 = np.random.rand(dim)
r2 = np.random.rand(dim)
A1 = 2 * a * r1 - a # 计算系数A1
C1 = 2 * r2 # 计算系数C1
D_alpha = abs(C1 * alpha_pos - pos_list[i, :]) # 计算向量D_alpha
X1 = alpha_pos - A1 * D_alpha # 计算新位置X1
r1 = np.random.rand(dim)
r2 = np.random.rand(dim)
A2 = 2 * a * r1 - a # 计算系数A2
C2 = 2 * r2 # 计算系数C2
D_beta = abs(C2 * beta_pos - pos_list[i, :]) # 计算向量D_beta
X2 = beta_pos - A2 * D_beta # 计算新位置X2
r1 = np.random.rand(dim)
r2 = np.random.rand(dim)
A3 = 2 * a * r1 - a # 计算系数A3
C3 = 2 * r2 # 计算系数C3
D_delta = abs(C3 * delta_pos - pos_list[i, :]) # 计算向量D_delta
X3 = delta_pos - A3 * D_delta # 计算新位置X3
pos_list[i, :] = (X1 + X2 + X3) / 3 # 更新位置
# 边界处理
pos_list[i, :] = np.clip(pos_list[i, :], lb, ub)
return alpha_pos, alpha_score
# 测试函数
def test_func(x):
y1 = x[0]**2 + x[1]**2
y2 = (x[0]-1)**2 + x[1]**2
return [y1, y2]
# 测试
lb = [-5, -5]
ub = [5, 5]
dim = 2
search_agents_no = 30
max_iter = 200
alpha_pos, alpha_score = GWO_multi_obj_search(test_func, lb, ub, dim, search_agents_no, max_iter)
print("优化结果:")
print("最优位置:", alpha_pos)
print("最优目标值:", alpha_score)
```
在这个示例中,我们定义了一个测试函数 `test_func`,它有两个目标值。然后我们使用 GWO 多目标算法寻找该函数的 Pareto 前沿。在 `GWO_multi_obj_search` 函数中,我们先初始化灰狼种群,并按照算法的迭代方式进行更新。最后返回 Pareto 前沿上的最优解和对应的目标值。
阅读全文