pd.merge(on=,how=left)
时间: 2023-04-18 16:01:44 浏览: 465
pd.merge(on=,how=left)是Pandas库中的一个函数,用于将两个数据框按照指定的列进行合并,合并方式为左连接。左连接是指以左侧数据框为基础,将右侧数据框中与左侧数据框中指定列相同的行合并到左侧数据框中,如果右侧数据框中没有与左侧数据框匹配的行,则在左侧数据框中对应的列填充缺失值。
相关问题
pd.merge(data_frame, data_frame1, on='VIN', how='left')和pd.merge(data,data1,left_on='VIN',right_on='VIN',how='left')有什么区别
这两个`merge()`函数的区别在于指定合并的列的方式。
1. `pd.merge(data_frame, data_frame1, on='VIN', how='left')`
- 这种用法是在两个DataFrame中都有名为'VIN'的列,它们的列名相同,通过`on`参数指定要合并的列名。
- 使用`how='left'`表示进行左连接,即以左边的DataFrame为基准,保留左边DataFrame中所有的行,并将右边DataFrame中匹配到的行合并进来。
2. `pd.merge(data, data1, left_on='VIN', right_on='VIN', how='left')`
- 这种用法是在两个DataFrame中有不同的列名,需要通过`left_on`和`right_on`参数分别指定左右两个DataFrame中用于合并的列名。
- 使用`how='left'`表示进行左连接,保留左边DataFrame中所有的行,并将右边DataFrame中匹配到的行合并进来。
总结区别:
- 在第一种用法中,两个DataFrame中要合并的列名相同,只需要使用`on`参数指定列名即可。
- 在第二种用法中,两个DataFrame中要合并的列名不同,需要使用`left_on`和`right_on`参数分别指定左右两个DataFrame中的列名。
希望这样解释清楚了这两种用法的区别。如果还有其他问题,请随时提问。
datasets_yc = pd.merge(datasets_yc,coupon_rate,how='left',on='Coupon_id') datasets_yc = pd.merge(datasets_yc,user_mer_num,how='left',on=['User_id','Merchant_id']) datasets_yc = pd.merge(datasets_yc,user_mer_coupon,how='left',on=['User_id','Merchant_id']) datasets_yc = pd.merge(datasets_yc,user_mer,how='left',on=['User_id','Merchant_id']) datasets_yc['user_mer_cop_rate'] = datasets_yc['user_mer_num'] / datasets_yc['user_mer_coupon']
这段代码的作用是通过 `merge` 函数将多个 DataFrame 进行合并,并计算出 `user_mer_cop_rate` 列的值。
这里可以对代码进行优化,使用 `merge` 函数的链式调用,可以简化代码并提高代码的可读性:
```python
datasets_yc = datasets_yc.merge(coupon_rate, on='Coupon_id', how='left') \
.merge(user_mer_num, on=['User_id','Merchant_id'], how='left') \
.merge(user_mer_coupon, on=['User_id','Merchant_id'], how='left') \
.merge(user_mer, on=['User_id','Merchant_id'], how='left')
datasets_yc['user_mer_cop_rate'] = datasets_yc['user_mer_num'] / datasets_yc['user_mer_coupon']
```
这里使用了多次 `merge` 函数进行 DataFrame 的合并,并在最后计算出 `user_mer_cop_rate` 列的值。相比原来的代码,这段代码更加简洁,可读性也更高。
阅读全文