深度混合可变形卷积 代码
时间: 2024-12-31 10:33:45 浏览: 6
### 关于深度混合可变形卷积的代码实现
对于深度混合可变形卷积网络的设计,该结构允许模型学习空间变换参数来增强特征提取能力[^1]。下面提供了一个基于PyTorch框架下简单的深度混合可变形卷积层的实现方式。
```python
import torch
from torch import nn
import torchvision.ops.deform_conv as deform_conv
class DeepHybridDeformConv(nn.Module):
def __init__(self, inc, outc, kernel_size=3, stride=1, padding=1, bias=None):
super(DeepHybridDeformConv, self).__init__()
# Offset generation network (OGN), which predicts the offsets.
self.offset_net = nn.Sequential(
nn.Conv2d(in_channels=inc,
out_channels=kernel_size * kernel_size * 2, # 2 indicates that there are two coordinates per point.
kernel_size=kernel_size,
stride=stride,
padding=padding),
nn.ReLU(inplace=True)
)
# Deformable Convolution Layer
self.conv_op = deform_conv.DeformConv2d(in_channels=inc,
out_channels=outc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias)
def forward(self, input_tensor):
offset = self.offset_net(input_tensor)
output = self.conv_op(input=input_tensor, offset=offset)
return output
```
此段代码定义了一种新的卷积操作——即通过引入偏移量预测子网(Offset Generation Network),使得标准卷积核能够自适应调整其采样位置,从而更好地捕捉目标物体形状变化带来的影响。
阅读全文