self.lin = Linear(in_channels, out_channels, bias=False, weight_initializer='glorot')
时间: 2024-06-05 19:06:19 浏览: 99
This code initializes a linear layer with input channels "in_channels" and output channels "out_channels". The "bias" parameter is set to False, meaning that the layer will not have a bias term. The weight matrix of the layer will be initialized using the Glorot initialization method, which is a commonly used weight initialization technique in deep learning.
相关问题
self.dilation_rate = dilation_rate self.nb_filters = nb_filters self.kernel_size = kernel_size self.padding = padding self.activation = activation self.dropout_rate = dropout_rate self.use_batch_norm = use_batch_norm self.use_layer_norm = use_layer_norm self.kernel_initializer = kernel_initializer self.layers = [] self.layers_outputs = [] self.shape_match_conv = None self.res_output_shape = None self.final_activation = None
这段代码是定义一个卷积神经网络中的一个卷积层的各种参数和属性。具体解释如下:
- dilation_rate: 空洞率,即卷积核中的间隔数,用于增加卷积层的感受野,提高特征提取能力。
- nb_filters: 卷积核数量,一般越多模型的表达能力越强,但计算量也会增加。
- kernel_size: 卷积核大小,通常是一个正方形或长方形,用于控制卷积操作的范围。
- padding: 边缘填充方式,可以选择"valid"或"same",分别表示不进行填充和进行0填充以保持输出和输入形状一致。
- activation: 激活函数,用于增加模型非线性拟合能力。
- dropout_rate: Dropout率,用于防止过拟合,随机将一定比例的神经元输出置为0。
- use_batch_norm: 是否使用批归一化,可以加速神经网络训练,提高模型泛化能力。
- use_layer_norm: 是否使用层归一化,也是一种归一化方法。
- kernel_initializer: 卷积核的初始化方法,可以是随机初始化或预训练模型初始化。
- layers: 保存该卷积层中的所有神经元。
- layers_outputs: 保存该卷积层中每个神经元的输出。
- shape_match_conv: 保存形状匹配的卷积层,用于处理残差连接。
- res_output_shape: 保存残差连接输出的形状。
- final_activation: 最后的激活函数,用于输出最终的特征图像。
解释每一句class RepVggBlock(nn.Layer): def init(self, ch_in, ch_out, act='relu', alpha=False): super(RepVggBlock, self).init() self.ch_in = ch_in self.ch_out = ch_out self.conv1 = ConvBNLayer( ch_in, ch_out, 3, stride=1, padding=1, act=None) self.conv2 = ConvBNLayer( ch_in, ch_out, 1, stride=1, padding=0, act=None) self.act = get_act_fn(act) if act is None or isinstance(act, ( str, dict)) else act if alpha: self.alpha = self.create_parameter( shape=[1], attr=ParamAttr(initializer=Constant(value=1.)), dtype="float32") else: self.alpha = None def forward(self, x): if hasattr(self, 'conv'): y = self.conv(x) else: if self.alpha: y = self.conv1(x) + self.alpha * self.conv2(x) else: y = self.conv1(x) + self.conv2(x) y = self.act(y) return y def convert_to_deploy(self): if not hasattr(self, 'conv'): self.conv = nn.Conv2D( in_channels=self.ch_in, out_channels=self.ch_out, kernel_size=3, stride=1, padding=1, groups=1) kernel, bias = self.get_equivalent_kernel_bias() self.conv.weight.set_value(kernel) self.conv.bias.set_value(bias) self.delattr('conv1') self.delattr('conv2') def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1) kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2) if self.alpha: return kernel3x3 + self.alpha * self._pad_1x1_to_3x3_tensor( kernel1x1), bias3x3 + self.alpha * bias1x1 else: return kernel3x3 + self._pad_1x1_to_3x3_tensor( kernel1x1), bias3x3 + bias1x1 def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return nn.functional.pad(kernel1x1, [1, 1, 1, 1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 kernel = branch.conv.weight running_mean = branch.bn._mean running_var = branch.bn._variance gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn._epsilon std = (running_var + eps).sqrt() t = (gamma / std).reshape((-1, 1, 1, 1)) return kernel * t, beta - running_mean * gamma / std
这段代码定义了一个名为 RepVggBlock 的类,它继承自 nn.Layer 类。这个类用于实现 RepVGG 网络中的基本块。RepVGG 是一种轻量级的卷积神经网络,它的主要思想是将常规的卷积操作替换为由卷积和 Batch Normalization(BN)操作组成的基本块,从而在不损失精度的情况下减少网络参数的数量。
在这个类中,__init__ 方法定义了类的初始化函数,它接受三个参数:ch_in、ch_out 和 act。其中,ch_in 和 ch_out 分别表示输入通道数和输出通道数,act 表示激活函数的类型。在初始化函数中,首先调用父类的初始化函数 super(RepVggBlock, self).__init__() 来初始化父类的属性。然后,将输入和输出通道数保存到 self.ch_in 和 self.ch_out 中。接着,使用 ConvBNLayer 类创建两个卷积层:self.conv1 和 self.conv2。这两个卷积层分别使用 3x3 和 1x1 的卷积核进行卷积操作,并且没有使用激活函数。最后,根据输入的激活函数类型,使用 get_act_fn 函数获取激活函数,并保存到 self.act 中。如果激活函数为 None 或者是字符串或字典类型,则 self.act 直接保存激活函数类型,否则就保存激活函数的实例。
接着,forward 方法定义了类的前向传播函数。它接受一个输入张量 x,根据是否已经初始化了 self.conv 属性来判断使用哪个卷积操作。如果已经初始化了 self.conv 属性,则使用 self.conv 对输入进行卷积操作;否则,分别对输入使用 self.conv1 和 self.conv2 进行卷积操作,并将它们相加。如果类的 alpha 属性存在,则使用 alpha 值对 self.conv2 的输出进行缩放,然后再将两个卷积层的输出相加。最后,对输出进行激活函数处理,并返回输出。
convert_to_deploy 方法用于将训练好的模型转换为部署模型。它首先检查类中是否已经初始化了 self.conv 属性,如果没有,则创建一个新的 Conv2D 层,并将其权重和偏置设置为等效的卷积和 BN 层的权重和偏置。然后,删除 self.conv1 和 self.conv2 属性。
get_equivalent_kernel_bias 方法用于计算等效的卷积和 BN 层的权重和偏置。它首先将 self.conv1 和 self.conv2 层的权重和偏置分别融合到 kernel3x3 和 bias3x3 变量中,并使用 _pad_1x1_to_3x3_tensor 函数将 kernel1x1 变量的尺寸从 1x1 扩展到 3x3。如果类的 alpha 属性存在,则将 kernel1x1 加权缩放后再加到 kernel3x3 中。最后,将偏置项也进行融合,并返回等效的权重和偏置。
_pad_1x1_to_3x3_tensor 方法用于将 1x1 的卷积核扩展到 3x3。
_fuse_bn_tensor 方法用于将卷积和 BN 层进行融合并返回等效的权重和偏置。它首先获取卷积层的权重、BN 层的运行均值、方差、缩放因子和偏置项。然后,根据 BN 层的参数计算标准差,并将缩放因子 reshape 成与权重相同的形状。最后,根据融合公式计算等效的权重和偏置,并返回。
阅读全文
相关推荐

















