# 定义权重层 class WeightLayer(Layer): def __init__(self, output_dim, **kwargs): self.output_dim = output_dim super(WeightLayer, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight(name='kernel', shape=(input_shape[1], self.output_dim), initializer='uniform', trainable=True) super(WeightLayer, self).build(input_shape) def call(self, x): return x * self.kernel def compute_output_shape(self, input_shape): return (input_shape[0], self.output_dim)?
时间: 2024-02-14 10:36:13 浏览: 70
这段代码定义了一个权重层 WeightLayer,它继承了 Keras 的 Layer 类。这个层的作用是将输入 x 与自己的 kernel(权重矩阵)相乘,并返回结果。
在构造函数中,我们传入了 output_dim 参数,代表了输出的维度。在 build 方法中,我们根据输入的形状定义了一个名为 kernel 的权重矩阵,它的形状是 (input_shape[1], self.output_dim),其中 input_shape[1] 表示输入的第二个维度,因为第一个维度是样本数,我们不需要在权重层中处理。
在 call 方法中,我们将输入 x 乘以 kernel,得到输出。最后,我们重载了 compute_output_shape 方法,返回了输出的形状。
相关问题
from keras import backend as K from keras.engine.topology import Layer class MyLayer(Layer): def __init__(self, output_dim, **kwargs): self.output_dim = output_dim super(MyLayer, self).__init__(**kwargs) def build(self, input_shape): # 为该层创建一个可训练的权重 self.kernel = self.add_weight(name='kernel', shape=(input_shape[1], self.output_dim), initializer='uniform', trainable=True) super(MyLayer, self).build(input_shape) # 一定要在最后调用它 def call(self, x): return K.dot(x, self.kernel) def compute_output_shape(self, input_shape): return (input_shape[0], self.output_dim)
这是一个使用Keras实现自定义层的代码,具体来说,定义了一个名为MyLayer的层,该层的功能是将输入x与可训练的权重kernel做矩阵乘法,并输出结果。其中,input_shape[1]表示输入x的第二个维度的大小,即输入的特征维度,self.output_dim表示输出的特征维度,initializer='uniform'表示权重的初始化方式为均匀分布。最后,compute_output_shape方法用于计算该层的输出形状。
from keras import backend as K from keras.engine.topology import Layer class Self_Attention(Layer): def __init__(self, output_dim, **kwargs): self.output_dim = output_dim super(Self_Attention, self).__init__(**kwargs) def build(self, input_shape): # 为该层创建一个可训练的权重 # inputs.shape = (batch_size, time_steps, seq_len) # 可能seq_len是64,output_dim是128 self.kernel = self.add_weight(name='kernel', shape=(3, input_shape[2], self.output_dim), initializer='uniform', trainable=True) super(Self_Attention, self).build(input_shape) # 一定要在最后调用它 def call(self, x): WQ = K.dot(x, self.kernel[0]) WK = K.dot(x, self.kernel[1]) WV = K.dot(x, self.kernel[2]) print("WQ.shape", WQ.shape) # print("WQ_.shape", WQ_.shape) print("K.permute_dimensions(WK, [0, 2, 1]).shape", K.permute_dimensions(WK, [0, 2, 1]).shape) QK = K.batch_dot(WQ, K.permute_dimensions(WK, [0, 2, 1])) QK = QK / (64 ** 0.5) QK = K.softmax(QK) print("QK.shape", QK.shape) # distribution函数: (QxKt)/dk V = K.batch_dot(QK, WV) return V def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[1], self.output_dim) 解释这段代码,举例怎样使用
这段代码实现了一个自注意力层(Self-Attention Layer),用于对输入的三维张量进行自注意力计算,得到对应的输出张量。
具体来说,代码中的Self_Attention类继承自keras.engine.topology中的Layer类,重载了其中的build、call和compute_output_shape方法,用于构建层、计算输出和计算输出张量的形状。在初始化时,通过传入output_dim参数来指定输出张量的最后一维大小,即self.output_dim。
在build方法中,根据输入张量的形状input_shape创建了一个可训练的权重kernel,其形状为(3, input_shape[2], self.output_dim),即包括三个矩阵,每个矩阵的列数都为输入张量的最后一维大小self.output_dim,行数为输入张量的中间维大小。这些矩阵将被用于计算注意力分布。
在call方法中,首先通过输入张量x和kernel中的第一个矩阵计算出Q向量,第二个矩阵计算出K向量,第三个矩阵计算出V向量。然后将K向量转置后进行矩阵乘法得到QK矩阵,再除以一个标量64的平方根,最后使用softmax函数得到注意力分布QK。
最后将注意力分布QK和V向量进行矩阵乘法,得到输出张量V。
一个例子使用该自注意力层的方法如下:
```python
from keras.models import Sequential
from keras.layers import Embedding, LSTM, Dense
from Self_Attention import Self_Attention # 导入自注意力层
model = Sequential()
model.add(Embedding(max_features, 128))
model.add(LSTM(64, return_sequences=True))
model.add(Self_Attention(128)) # 添加自注意力层
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
```
在这个例子中,首先通过Embedding层将输入序列编码为128维向量,然后通过LSTM层对序列进行处理,其中return_sequences=True表示输出中包含整个序列的输出而不仅仅是最后一个时间步的输出。然后再添加一个自注意力层Self_Attention,将其输出的128维向量作为Dense层的输入进行二分类任务的训练。
阅读全文