iters_num = 10000 # 适当设定循环的次数 train_size = x_train.shape[0] batch_size = 100 learning_rate = 0.1 啥意思
时间: 2024-04-08 17:30:36 浏览: 133
这段代码定义了一些变量,用于控制神经网络的训练过程。
```python
iters_num = 10000 # 适当设定循环的次数
train_size = x_train.shape[0]
batch_size = 100
learning_rate = 0.1
```
- `iters_num`表示训练循环的总次数。在这个例子中,循环将重复进行10000次。
- `train_size`表示训练数据集的样本数量。这个值通常通过查看训练数据集的形状(`x_train.shape[0]`)来获取。
- `batch_size`表示每个训练批次中包含的样本数量。在这个例子中,每个批次将包含100个样本。
- `learning_rate`表示训练过程中使用的学习率。学习率决定了每次更新模型参数时的步长大小。在这个例子中,学习率被设置为0.1。
这些变量的具体取值可以根据问题的需求和实际情况进行调整。其中,`iters_num`和`learning_rate`通常需要进行调参来优化训练过程和模型性能。
相关问题
import idx2numpy import numpy as np from functions import * from two_layer_network import * #导入训练集和训练集对应的标签并将其初始化 X_train,T_train=idx2numpy.convert_from_file('emnist/emnist-letters-train-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-train-labels-idx1-ubyte') X_train,T_train=X_train.copy(),T_train.copy() X_train=X_train.reshape((X_train.shape[0],-1)) T_train=T_train-1 T_train=np.eye(26)[T_train] #导入测试集和测试集对应的标签标签并将其初始化 X_test,T_test=idx2numpy.convert_from_file('emnist/emnist-letters-test-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-test-labels-idx1-ubyte') X_test,T_test=X_test.copy(),T_test.copy() X_test=X_test.reshape((X_test.shape[0],-1)) T_test=T_test-1 T_test=np.eye(26)[T_test] network=TwoLayerNet(input_size=784,hidden_size=45,output_size=26) train_size=X_train.shape[0] batch_size=100 iters_num=100000 learning_rate=0.01 train_loss_list=[] train_acc_list=[] test_acc_list=[] iter_per_epoch=max(train_size/batch_size,1) for i in range(iters_num): batch_mask=np.random.choice(train_size,batch_size) X_batch=X_train[batch_mask] T_batch=T_train[batch_mask] #从数据集里抽取batch_size笔数据 #grad=network.numerical_gradient(X_batch,T_batch)(跑不出来,卡在None None) grad=network.gradient(X_batch,T_batch) #计算梯度 for key in ('W1','b1','W2','b2') : network.params[key]-=learning_rate*grad[key] #误差反向传播法调整参数 loss=network.loss(X_batch,T_batch) train_loss_list.append(loss) #记录学习过程 if i % iter_per_epoch==0: train_acc=network.accuracy(X_train,T_train) test_acc=network.accuracy(X_test,T_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) print(train_acc,test_acc) #调整学习率 if i > 0 and i % 1000 == 0 and i<3000: learning_rate *= 0.1 print("learning rate reduced to " + str(learning_rate)) print(network.params) print(train_acc_list[-1],test_acc_list[-1])如果我想存储参数,该怎么做
如果想要存储参数,可以使用Python内置的pickle模块。具体步骤如下:
1. 在代码中加入以下代码,将训练后的参数保存到文件中:
```
import pickle
with open("params.pkl", "wb") as f:
pickle.dump(network.params, f)
```
其中,"params.pkl"是你想要存储参数的文件名,network.params是你的神经网络的参数。
2. 在需要使用训练后的参数进行预测时,可以通过以下代码从文件中读取参数:
```
import pickle
with open("params.pkl", "rb") as f:
params = pickle.load(f)
network.params = params
```
其中,params是从文件中读取到的参数,将其赋给network.params即可。
误差反向传播法的实现 输出使用后4000个样本训练得到模型在测试集上的结果,参数设置为:batch:300;iters_num:2000;lambda:0.1
误差反向传播法(Backpropagation)是一种常用的神经网络训练方法,它通过计算神经网络输出与真实标签之间的误差,然后根据误差大小来更新神经网络中的参数。
具体实现步骤如下:
1. 初始化神经网络参数,包括权重和偏置。
2. 从训练数据中随机选择一批样本(batch),将这些样本输入神经网络,计算输出结果。
3. 计算输出结果与真实标签之间的误差,使用误差函数(如均方误差)来衡量误差大小。
4. 根据误差大小来计算梯度,即误差对于每个参数的偏导数。
5. 使用梯度下降法来更新神经网络中的参数,即将每个参数的值减去对应的学习率乘以梯度。
6. 重复步骤2-5,直到达到指定的迭代次数(iters_num)或误差达到指定的阈值。
代码实现如下:
```
import numpy as np
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def sigmoid_grad(x):
return (1 - sigmoid(x)) * sigmoid(x)
class TwoLayerNet:
def __init__(self, input_size, hidden_size, output_size):
self.params = {}
self.params['W1'] = 0.01 * np.random.randn(input_size, hidden_size)
self.params['b1'] = np.zeros(hidden_size)
self.params['W2'] = 0.01 * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)
def predict(self, x):
W1, b1, W2, b2 = self.params['W1'], self.params['b1'], self.params['W2'], self.params['b2']
z1 = np.dot(x, W1) + b1
a1 = sigmoid(z1)
z2 = np.dot(a1, W2) + b2
y = z2
return y
def loss(self, x, t):
y = self.predict(x)
loss = np.mean((y - t) ** 2) + 0.5 * lambda_reg * (np.sum(self.params['W1'] ** 2) + np.sum(self.params['W2'] ** 2))
return loss
def accuracy(self, x, t):
y = self.predict(x)
accuracy = np.mean((y > 0.5) == (t == 1)) * 100
return accuracy
def numerical_gradient(self, x, t):
h = 1e-4
grads = {}
for param_name in self.params:
param = self.params[param_name]
grad = np.zeros_like(param)
for i in range(param.shape[0]):
for j in range(param.shape[1]):
tmp_val = param[i,j]
param[i,j] = tmp_val + h
f1 = self.loss(x, t)
param[i,j] = tmp_val - h
f2 = self.loss(x, t)
grad[i,j] = (f1 - f2) / (2 * h)
param[i,j] = tmp_val
grads[param_name] = grad
return grads
def gradient(self, x, t):
W1, b1, W2, b2 = self.params['W1'], self.params['b1'], self.params['W2'], self.params['b2']
grads = {}
batch_num = x.shape[0]
# forward
z1 = np.dot(x, W1) + b1
a1 = sigmoid(z1)
z2 = np.dot(a1, W2) + b2
y = z2
# backward
delta2 = y - t
grads['W2'] = np.dot(a1.T, delta2)
grads['b2'] = np.sum(delta2, axis=0)
delta1 = np.dot(delta2, W2.T) * sigmoid_grad(z1)
grads['W1'] = np.dot(x.T, delta1)
grads['b1'] = np.sum(delta1, axis=0)
# add regularization
grads['W2'] += lambda_reg * W2
grads['W1'] += lambda_reg * W1
return grads
def fit(self, x_train, y_train, x_test, y_test, batch_size=100, epochs=10, learning_rate=0.1, lambda_reg=0.1):
self.lambda_reg = lambda_reg
train_loss_list = []
train_acc_list = []
test_acc_list = []
train_size = x_train.shape[0]
iter_per_epoch = max(train_size / batch_size, 1)
for epoch in range(epochs):
perm = np.random.permutation(train_size)
for i in range(0, train_size, batch_size):
x_batch = x_train[perm[i:i+batch_size]]
y_batch = y_train[perm[i:i+batch_size]]
grads = self.gradient(x_batch, y_batch)
for param_name in self.params:
self.params[param_name] -= learning_rate * grads[param_name]
train_loss = self.loss(x_train, y_train)
train_loss_list.append(train_loss)
train_acc = self.accuracy(x_train, y_train)
train_acc_list.append(train_acc)
test_acc = self.accuracy(x_test, y_test)
test_acc_list.append(test_acc)
print("epoch: %d, train_loss: %f, train_acc: %f, test_acc: %f" % (epoch+1, train_loss, train_acc, test_acc))
return train_loss_list, train_acc_list, test_acc_list
# 读取数据
x_train = np.load('x_train.npy')
y_train = np.load('y_train.npy')
x_test = np.load('x_test.npy')
y_test = np.load('y_test.npy')
# 构建神经网络模型
input_size = x_train.shape[1]
hidden_size = 100
output_size = 1
net = TwoLayerNet(input_size, hidden_size, output_size)
# 训练神经网络模型
batch_size = 300
iters_num = 2000
lambda_reg = 0.1
train_loss_list, train_acc_list, test_acc_list = net.fit(x_train, y_train, x_test, y_test, batch_size, iters_num, lambda_reg)
# 输出测试集结果
test_acc = net.accuracy(x_test, y_test)
print("Test accuracy: %f" % test_acc)
```
在输出后4000个样本训练得到模型在测试集上的结果时,我们只需要将训练集中的前4000个样本用来训练模型,然后再使用测试集来测试模型的准确率即可。具体代码如下:
```
# 取出训练集中的前4000个样本
x_train = x_train[:4000]
y_train = y_train[:4000]
# 训练神经网络模型
batch_size = 300
iters_num = 2000
lambda_reg = 0.1
train_loss_list, train_acc_list, test_acc_list = net.fit(x_train, y_train, x_test, y_test, batch_size, iters_num, lambda_reg)
# 输出测试集结果
test_acc = net.accuracy(x_test, y_test)
print("Test accuracy: %f" % test_acc)
```
阅读全文
相关推荐















