iters_num = 10000 # 适当设定循环的次数 train_size = x_train.shape[0] batch_size = 100 learning_rate = 0.1 啥意思

时间: 2024-04-08 07:30:36 浏览: 14
这段代码定义了一些变量,用于控制神经网络的训练过程。 ```python iters_num = 10000 # 适当设定循环的次数 train_size = x_train.shape[0] batch_size = 100 learning_rate = 0.1 ``` - `iters_num`表示训练循环的总次数。在这个例子中,循环将重复进行10000次。 - `train_size`表示训练数据集的样本数量。这个值通常通过查看训练数据集的形状(`x_train.shape[0]`)来获取。 - `batch_size`表示每个训练批次中包含的样本数量。在这个例子中,每个批次将包含100个样本。 - `learning_rate`表示训练过程中使用的学习率。学习率决定了每次更新模型参数时的步长大小。在这个例子中,学习率被设置为0.1。 这些变量的具体取值可以根据问题的需求和实际情况进行调整。其中,`iters_num`和`learning_rate`通常需要进行调参来优化训练过程和模型性能。
相关问题

import idx2numpy import numpy as np from functions import * from two_layer_network import * #导入训练集和训练集对应的标签并将其初始化 X_train,T_train=idx2numpy.convert_from_file('emnist/emnist-letters-train-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-train-labels-idx1-ubyte') X_train,T_train=X_train.copy(),T_train.copy() X_train=X_train.reshape((X_train.shape[0],-1)) T_train=T_train-1 T_train=np.eye(26)[T_train] #导入测试集和测试集对应的标签标签并将其初始化 X_test,T_test=idx2numpy.convert_from_file('emnist/emnist-letters-test-images-idx3-ubyte'),idx2numpy.convert_from_file('emnist/emnist-letters-test-labels-idx1-ubyte') X_test,T_test=X_test.copy(),T_test.copy() X_test=X_test.reshape((X_test.shape[0],-1)) T_test=T_test-1 T_test=np.eye(26)[T_test] network=TwoLayerNet(input_size=784,hidden_size=45,output_size=26) train_size=X_train.shape[0] batch_size=100 iters_num=100000 learning_rate=0.01 train_loss_list=[] train_acc_list=[] test_acc_list=[] iter_per_epoch=max(train_size/batch_size,1) for i in range(iters_num): batch_mask=np.random.choice(train_size,batch_size) X_batch=X_train[batch_mask] T_batch=T_train[batch_mask] #从数据集里抽取batch_size笔数据 #grad=network.numerical_gradient(X_batch,T_batch)(跑不出来,卡在None None) grad=network.gradient(X_batch,T_batch) #计算梯度 for key in ('W1','b1','W2','b2') : network.params[key]-=learning_rate*grad[key] #误差反向传播法调整参数 loss=network.loss(X_batch,T_batch) train_loss_list.append(loss) #记录学习过程 if i % iter_per_epoch==0: train_acc=network.accuracy(X_train,T_train) test_acc=network.accuracy(X_test,T_test) train_acc_list.append(train_acc) test_acc_list.append(test_acc) print(train_acc,test_acc) #调整学习率 if i > 0 and i % 1000 == 0 and i<3000: learning_rate *= 0.1 print("learning rate reduced to " + str(learning_rate)) print(network.params) print(train_acc_list[-1],test_acc_list[-1])如果我想存储参数,该怎么做

如果想要存储参数,可以使用Python内置的pickle模块。具体步骤如下: 1. 在代码中加入以下代码,将训练后的参数保存到文件中: ``` import pickle with open("params.pkl", "wb") as f: pickle.dump(network.params, f) ``` 其中,"params.pkl"是你想要存储参数的文件名,network.params是你的神经网络的参数。 2. 在需要使用训练后的参数进行预测时,可以通过以下代码从文件中读取参数: ``` import pickle with open("params.pkl", "rb") as f: params = pickle.load(f) network.params = params ``` 其中,params是从文件中读取到的参数,将其赋给network.params即可。

误差反向传播法的实现 输出使用后4000个样本训练得到模型在测试集上的结果,参数设置为:batch:300;iters_num:2000;lambda:0.1

误差反向传播法(Backpropagation)是一种常用的神经网络训练方法,它通过计算神经网络输出与真实标签之间的误差,然后根据误差大小来更新神经网络中的参数。 具体实现步骤如下: 1. 初始化神经网络参数,包括权重和偏置。 2. 从训练数据中随机选择一批样本(batch),将这些样本输入神经网络,计算输出结果。 3. 计算输出结果与真实标签之间的误差,使用误差函数(如均方误差)来衡量误差大小。 4. 根据误差大小来计算梯度,即误差对于每个参数的偏导数。 5. 使用梯度下降法来更新神经网络中的参数,即将每个参数的值减去对应的学习率乘以梯度。 6. 重复步骤2-5,直到达到指定的迭代次数(iters_num)或误差达到指定的阈值。 代码实现如下: ``` import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoid_grad(x): return (1 - sigmoid(x)) * sigmoid(x) class TwoLayerNet: def __init__(self, input_size, hidden_size, output_size): self.params = {} self.params['W1'] = 0.01 * np.random.randn(input_size, hidden_size) self.params['b1'] = np.zeros(hidden_size) self.params['W2'] = 0.01 * np.random.randn(hidden_size, output_size) self.params['b2'] = np.zeros(output_size) def predict(self, x): W1, b1, W2, b2 = self.params['W1'], self.params['b1'], self.params['W2'], self.params['b2'] z1 = np.dot(x, W1) + b1 a1 = sigmoid(z1) z2 = np.dot(a1, W2) + b2 y = z2 return y def loss(self, x, t): y = self.predict(x) loss = np.mean((y - t) ** 2) + 0.5 * lambda_reg * (np.sum(self.params['W1'] ** 2) + np.sum(self.params['W2'] ** 2)) return loss def accuracy(self, x, t): y = self.predict(x) accuracy = np.mean((y > 0.5) == (t == 1)) * 100 return accuracy def numerical_gradient(self, x, t): h = 1e-4 grads = {} for param_name in self.params: param = self.params[param_name] grad = np.zeros_like(param) for i in range(param.shape[0]): for j in range(param.shape[1]): tmp_val = param[i,j] param[i,j] = tmp_val + h f1 = self.loss(x, t) param[i,j] = tmp_val - h f2 = self.loss(x, t) grad[i,j] = (f1 - f2) / (2 * h) param[i,j] = tmp_val grads[param_name] = grad return grads def gradient(self, x, t): W1, b1, W2, b2 = self.params['W1'], self.params['b1'], self.params['W2'], self.params['b2'] grads = {} batch_num = x.shape[0] # forward z1 = np.dot(x, W1) + b1 a1 = sigmoid(z1) z2 = np.dot(a1, W2) + b2 y = z2 # backward delta2 = y - t grads['W2'] = np.dot(a1.T, delta2) grads['b2'] = np.sum(delta2, axis=0) delta1 = np.dot(delta2, W2.T) * sigmoid_grad(z1) grads['W1'] = np.dot(x.T, delta1) grads['b1'] = np.sum(delta1, axis=0) # add regularization grads['W2'] += lambda_reg * W2 grads['W1'] += lambda_reg * W1 return grads def fit(self, x_train, y_train, x_test, y_test, batch_size=100, epochs=10, learning_rate=0.1, lambda_reg=0.1): self.lambda_reg = lambda_reg train_loss_list = [] train_acc_list = [] test_acc_list = [] train_size = x_train.shape[0] iter_per_epoch = max(train_size / batch_size, 1) for epoch in range(epochs): perm = np.random.permutation(train_size) for i in range(0, train_size, batch_size): x_batch = x_train[perm[i:i+batch_size]] y_batch = y_train[perm[i:i+batch_size]] grads = self.gradient(x_batch, y_batch) for param_name in self.params: self.params[param_name] -= learning_rate * grads[param_name] train_loss = self.loss(x_train, y_train) train_loss_list.append(train_loss) train_acc = self.accuracy(x_train, y_train) train_acc_list.append(train_acc) test_acc = self.accuracy(x_test, y_test) test_acc_list.append(test_acc) print("epoch: %d, train_loss: %f, train_acc: %f, test_acc: %f" % (epoch+1, train_loss, train_acc, test_acc)) return train_loss_list, train_acc_list, test_acc_list # 读取数据 x_train = np.load('x_train.npy') y_train = np.load('y_train.npy') x_test = np.load('x_test.npy') y_test = np.load('y_test.npy') # 构建神经网络模型 input_size = x_train.shape[1] hidden_size = 100 output_size = 1 net = TwoLayerNet(input_size, hidden_size, output_size) # 训练神经网络模型 batch_size = 300 iters_num = 2000 lambda_reg = 0.1 train_loss_list, train_acc_list, test_acc_list = net.fit(x_train, y_train, x_test, y_test, batch_size, iters_num, lambda_reg) # 输出测试集结果 test_acc = net.accuracy(x_test, y_test) print("Test accuracy: %f" % test_acc) ``` 在输出后4000个样本训练得到模型在测试集上的结果时,我们只需要将训练集中的前4000个样本用来训练模型,然后再使用测试集来测试模型的准确率即可。具体代码如下: ``` # 取出训练集中的前4000个样本 x_train = x_train[:4000] y_train = y_train[:4000] # 训练神经网络模型 batch_size = 300 iters_num = 2000 lambda_reg = 0.1 train_loss_list, train_acc_list, test_acc_list = net.fit(x_train, y_train, x_test, y_test, batch_size, iters_num, lambda_reg) # 输出测试集结果 test_acc = net.accuracy(x_test, y_test) print("Test accuracy: %f" % test_acc) ```

相关推荐

return data, label def __len__(self): return len(self.data)train_dataset = MyDataset(train, y[:split_boundary].values, time_steps, output_steps, target_index)test_ds = MyDataset(test, y[split_boundary:].values, time_steps, output_steps, target_index)class MyLSTMModel(nn.Module): def __init__(self): super(MyLSTMModel, self).__init__() self.rnn = nn.LSTM(input_dim, 16, 1, batch_first=True) self.flatten = nn.Flatten() self.fc1 = nn.Linear(16 * time_steps, 120) self.relu = nn.PReLU() self.fc2 = nn.Linear(120, output_steps) def forward(self, input): out, (h, c) = self.rnn(input) out = self.flatten(out) out = self.fc1(out) out = self.relu(out) out = self.fc2(out) return outepoch_num = 50batch_size = 128learning_rate = 0.001def train(): print('训练开始') model = MyLSTMModel() model.train() opt = optim.Adam(model.parameters(), lr=learning_rate) mse_loss = nn.MSELoss() data_reader = DataLoader(train_dataset, batch_size=batch_size, drop_last=True) history_loss = [] iter_epoch = [] for epoch in range(epoch_num): for data, label in data_reader: # 验证数据和标签的形状是否满足期望,如果不满足,则跳过这个批次 if data.shape[0] != batch_size or label.shape[0] != batch_size: continue train_ds = data.float() train_lb = label.float() out = model(train_ds) avg_loss = mse_loss(out, train_lb) avg_loss.backward() opt.step() opt.zero_grad() print('epoch {}, loss {}'.format(epoch, avg_loss.item())) iter_epoch.append(epoch) history_loss.append(avg_loss.item()) plt.plot(iter_epoch, history_loss, label='loss') plt.legend() plt.xlabel('iters') plt.ylabel('Loss') plt.show() torch.save(model.state_dict(), 'model_1')train()param_dict = torch.load('model_1')model = MyLSTMModel()model.load_state_dict(param_dict)model.eval()data_reader1 = DataLoader(test_ds, batch_size=batch_size, drop_last=True)res = []res1 = []# 在模型预测时,label 的处理for data, label in data_reader1: data = data.float() label = label.float() out = model(data) res.extend(out.detach().numpy().reshape(data.shape[0]).tolist()) res1.extend(label.numpy().tolist()) # 由于预测一步,所以无需 reshape,直接转为 list 即可title = "t321"plt.title(title, fontsize=24)plt.xlabel("time", fontsize=14)plt.ylabel("irr", fontsize=14)plt.plot(res, color='g', label='predict')plt.plot(res1, color='red', label='real')plt.legend()plt.grid()plt.show()的运算过程

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。