transformer的Encoder 的self-attention是什么

时间: 2023-05-10 16:55:52 浏览: 103
Transformer 的 Encoder 的 self-attention 是一种机制,它可以帮助模型在处理输入序列时,将每个位置的信息与其他位置的信息进行交互和整合,从而更好地捕捉序列中的上下文信息。具体来说,self-attention 会为每个输入位置计算一个权重向量,用于对所有输入位置的表示进行加权求和,从而得到该位置的最终表示。这个过程可以通过矩阵乘法和 softmax 函数实现。
相关问题

transformer的Encoder 输出的self-attention是什么

Transformer 的 Encoder 输出的 self-attention 是一种机制,它可以帮助模型在处理输入序列时,将每个位置的信息与其他位置的信息进行交互和整合,从而更好地捕捉序列中的长程依赖关系。具体来说,Encoder 的 self-attention 会计算每个位置与序列中所有其他位置的相似度,然后根据相似度对每个位置的信息进行加权求和,得到该位置的最终表示。这个过程可以通过矩阵乘法和 softmax 操作来实现。

Transformer and Self-Attention Pytorch代码

以下是使用PyTorch实现Transformer和Self-Attention的示例代码: ## Self-Attention ```python import torch import torch.nn as nn class SelfAttention(nn.Module): def __init__(self, embed_size, heads): super(SelfAttention, self).__init__() self.embed_size = embed_size self.heads = heads self.head_dim = embed_size // heads assert (self.head_dim * heads == embed_size), "Embed size needs to be divisible by heads" self.values = nn.Linear(self.head_dim, self.head_dim, bias=False) self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False) self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False) self.fc_out = nn.Linear(heads * self.head_dim, embed_size) def forward(self, values, keys, queries, mask): # Get number of training examples N = queries.shape[0] value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1] # Split embedding into self.heads pieces values = values.reshape(N, value_len, self.heads, self.head_dim) keys = keys.reshape(N, key_len, self.heads, self.head_dim) queries = queries.reshape(N, query_len, self.heads, self.head_dim) # Transpose to get dimensions batch_size * self.heads * seq_len * self.head_dim values = values.permute(0, 2, 1, 3) keys = keys.permute(0, 2, 1, 3) queries = queries.permute(0, 2, 1, 3) # Calculate energy energy = torch.matmul(queries, keys.permute(0, 1, 3, 2)) if mask is not None: energy = energy.masked_fill(mask == 0, float("-1e20")) # Apply softmax to get attention scores attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=-1) # Multiply attention scores with values out = torch.matmul(attention, values) # Concatenate and linearly transform output out = out.permute(0, 2, 1, 3).reshape(N, query_len, self.heads * self.head_dim) out = self.fc_out(out) return out ``` ## Transformer ```python import torch import torch.nn as nn from torch.nn.modules.activation import MultiheadAttention class TransformerBlock(nn.Module): def __init__(self, embed_size, heads, dropout, forward_expansion): super(TransformerBlock, self).__init__() self.attention = MultiheadAttention(embed_dim=embed_size, num_heads=heads) self.norm1 = nn.LayerNorm(embed_size) self.norm2 = nn.LayerNorm(embed_size) self.feed_forward = nn.Sequential( nn.Linear(embed_size, forward_expansion * embed_size), nn.ReLU(), nn.Linear(forward_expansion * embed_size, embed_size) ) self.dropout = nn.Dropout(dropout) def forward(self, value, key, query, mask): attention_output, _ = self.attention(query, key, value, attn_mask=mask) x = self.dropout(self.norm1(attention_output + query)) forward_output = self.feed_forward(x) out = self.dropout(self.norm2(forward_output + x)) return out class Encoder(nn.Module): def __init__(self, src_vocab_size, embed_size, num_layers, heads, device, forward_expansion, dropout, max_length): super(Encoder, self).__init__() self.embed_size = embed_size self.device = device self.word_embedding = nn.Embedding(src_vocab_size, embed_size) self.position_embedding = nn.Embedding(max_length, embed_size) self.layers = nn.ModuleList([ TransformerBlock(embed_size, heads, dropout, forward_expansion) for _ in range(num_layers) ]) self.dropout = nn.Dropout(dropout) def forward(self, x, mask): N, seq_length = x.shape positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device) out = self.dropout(self.word_embedding(x) + self.position_embedding(positions)) for layer in self.layers: out = layer(out, out, out, mask) return out class DecoderBlock(nn.Module): def __init__(self, embed_size, heads, forward_expansion, dropout, device): super(DecoderBlock, self).__init__() self.norm = nn.LayerNorm(embed_size) self.attention = MultiheadAttention(embed_size, heads) self.transformer_block = TransformerBlock(embed_size, heads, dropout, forward_expansion) self.dropout = nn.Dropout(dropout) def forward(self, x, value, key, src_mask, trg_mask): attention_output, _ = self.attention(x, x, x, attn_mask=trg_mask) query = self.dropout(self.norm(attention_output + x)) out = self.transformer_block(value, key, query, src_mask) return out class Decoder(nn.Module): def __init__(self, trg_vocab_size, embed_size, num_layers, heads, forward_expansion, dropout, device, max_length): super(Decoder, self).__init__() self.embed_size = embed_size self.device = device self.word_embedding = nn.Embedding(trg_vocab_size, embed_size) self.position_embedding = nn.Embedding(max_length, embed_size) self.layers = nn.ModuleList([ DecoderBlock(embed_size, heads, forward_expansion, dropout, device) for _ in range(num_layers) ]) self.fc_out = nn.Linear(embed_size, trg_vocab_size) self.dropout = nn.Dropout(dropout) def forward(self, x, enc_out, src_mask, trg_mask): N, seq_length = x.shape positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device) x = self.dropout(self.word_embedding(x) + self.position_embedding(positions)) for layer in self.layers: x = layer(x, enc_out, enc_out, src_mask, trg_mask) out = self.fc_out(x) return out ``` 这些代码可以用于实现Transformer和Self-Attention模型。但这只是示例,你需要根据你的数据和任务来调整这些代码中的各种超参数和结构。

相关推荐

最新推荐

recommend-type

grpcio-1.45.0-cp37-cp37m-musllinux_1_1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

AVee基础教程.pdf

AVee基础教程
recommend-type

mysql语句大全及用法

mysql语句大全及用法
recommend-type

cryptography-42.0.1-cp37-abi3-musllinux_1_1_aarch64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.4.0-cp38-cp38-manylinux1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

get() { return this.photoState },

这是一个 JavaScript 中的方法定义,它定义了一个名为 `get` 的方法。这个方法没有参数,它返回了 `this.photoState`。在这个方法中,`this` 是指当前对象,而 `photoState` 是该对象的一个属性。通常情况下,`get` 方法用于获取对象的属性值,并且可以在获取属性值之前进行一些逻辑操作。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。