Transformer self-attention
时间: 2023-10-12 11:06:11 浏览: 222
Transformer self-attention是Transformer模型中的一种注意力机制。它通过计算输入序列中每个位置的注意力权重,将序列中的每个元素与其他位置的元素进行加权组合。相比于传统的RNN模型,self-attention可以考虑到全局的上下文信息,并且可以并行地计算输出。
在Transformer中,self-attention被用于encoder和decoder的各个层中。它通过计算查询(query)、键(key)和值(value)的内积,得到每个位置的注意力权重。然后,根据注意力权重对值进行加权求和,得到输出。这样,每个位置的输出都可以考虑到其他位置的信息。
与RNN模型相比,Transformer self-attention具有以下优势:
1. 能够并行计算,提高了计算效率。
2. 能够考虑到全局的上下文信息,不受序列长度限制。
3. 没有序列顺序的限制,可以处理乱序输入。
相关问题
Transformer and Self-Attention Pytorch代码
下面是一个使用 PyTorch 实现 Transformer 和 Self-Attention 的示例代码:
首先,我们需要导入所需的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
```
然后,我们定义一个 Self-Attention 类:
```python
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (self.head_dim * heads == embed_size), "Embed size needs to be divisible by heads"
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads*self.head_dim, embed_size)
def forward(self, values, keys, query, mask):
N = query.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]
# Split embedding into self.heads pieces
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
query = query.reshape(N, query_len, self.heads, self.head_dim)
values = self.values(values) # (N, value_len, heads, head_dim)
keys = self.keys(keys) # (N, key_len, heads, head_dim)
query = self.queries(query) # (N, query_len, heads, heads_dim)
# Compute dot product attention
energy = torch.einsum("nqhd,nkhd->nhqk", [query, keys])
# energy shape: (N, heads, query_len, key_len)
if mask is not None:
energy = energy.masked_fill(mask == 0, float("-1e20"))
attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)
# Compute attention output
out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(
N, query_len, self.heads*self.head_dim
)
out = self.fc_out(out)
return out
```
接下来,我们定义一个 TransformerBlock 类:
```python
class TransformerBlock(nn.Module):
def __init__(self, embed_size, heads, dropout, forward_expansion):
super(TransformerBlock, self).__init__()
self.attention = SelfAttention(embed_size, heads)
self.norm1 = nn.LayerNorm(embed_size)
self.norm2 = nn.LayerNorm(embed_size)
self.feed_forward = nn.Sequential(
nn.Linear(embed_size, forward_expansion*embed_size),
nn.ReLU(),
nn.Linear(forward_expansion*embed_size, embed_size),
)
self.dropout = nn.Dropout(dropout)
def forward(self, value, key, query, mask):
attention = self.attention(value, key, query, mask)
x = self.dropout(self.norm1(attention + query))
forward = self.feed_forward(x)
out = self.dropout(self.norm2(forward + x))
return out
```
最后,我们定义一个 TransformerEncoder 类:
```python
class TransformerEncoder(nn.Module):
def __init__(self, embed_size, heads, dropout, forward_expansion, num_layers):
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList(
[
TransformerBlock(embed_size, heads, dropout, forward_expansion)
for _ in range(num_layers)
]
)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, x, x, mask)
return x
```
现在,我们已经定义了一个完整的 Transformer 模型,可以在实际应用中使用。
请告诉我Transformer and Self-Attention Pytorch代码,并教我如何使用
首先,让我们来了解一下Transformer和Self-Attention的概念。
Transformer是一种基于Self-Attention机制的深度学习模型,由Google的研究人员提出并在机器翻译任务上获得了很好的表现。它使用Self-Attention机制来建立输入和输出之间的全局依赖关系,从而减少了传统RNN模型中存在的长期依赖问题。
Self-Attention是一种机制,它可以将输入序列中的每个元素都与其他元素进行交互,以计算每个元素的权重。这种权重可以用来加权计算输入序列的加权和,从而得到输出。
下面是一个使用Pytorch实现Transformer和Self-Attention的基本示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class SelfAttention(nn.Module):
def __init__(self, hidden_size, num_heads):
super(SelfAttention, self).__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_size = hidden_size // num_heads
self.query = nn.Linear(hidden_size, hidden_size)
self.key = nn.Linear(hidden_size, hidden_size)
self.value = nn.Linear(hidden_size, hidden_size)
self.fc = nn.Linear(hidden_size, hidden_size)
def forward(self, x):
batch_size = x.size(0)
q = self.query(x).view(batch_size, -1, self.num_heads, self.head_size).transpose(1, 2) # (batch_size, num_heads, seq_len, head_size)
k = self.key(x).view(batch_size, -1, self.num_heads, self.head_size).transpose(1, 2) # (batch_size, num_heads, seq_len, head_size)
v = self.value(x).view(batch_size, -1, self.num_heads, self.head_size).transpose(1, 2) # (batch_size, num_heads, seq_len, head_size)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_size) # (batch_size, num_heads, seq_len, seq_len)
attn_weights = F.softmax(scores, dim=-1)
attn_output = torch.matmul(attn_weights, v) # (batch_size, num_heads, seq_len, head_size)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.hidden_size) # (batch_size, seq_len, hidden_size)
output = self.fc(attn_output) # (batch_size, seq_len, hidden_size)
return output
class TransformerBlock(nn.Module):
def __init__(self, hidden_size, num_heads):
super(TransformerBlock, self).__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.self_attn = SelfAttention(hidden_size, num_heads)
self.feed_forward = nn.Sequential(
nn.Linear(hidden_size, 4 * hidden_size),
nn.ReLU(),
nn.Linear(4 * hidden_size, hidden_size)
)
self.norm1 = nn.LayerNorm(hidden_size)
self.norm2 = nn.LayerNorm(hidden_size)
def forward(self, x):
attn_output = self.self_attn(x)
x = self.norm1(x + attn_output)
ff_output = self.feed_forward(x)
output = self.norm2(x + ff_output)
return output
class Transformer(nn.Module):
def __init__(self, input_size, hidden_size, num_heads, num_layers):
super(Transformer, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_heads = num_heads
self.num_layers = num_layers
self.embedding = nn.Embedding(input_size, hidden_size)
self.transformer_blocks = nn.ModuleList([TransformerBlock(hidden_size, num_heads) for _ in range(num_layers)])
self.fc = nn.Linear(hidden_size, input_size)
def forward(self, x):
x = self.embedding(x)
for i in range(self.num_layers):
x = self.transformer_blocks[i](x)
x = self.fc(x)
return x
```
在上述代码中,我们定义了三个不同的模块:SelfAttention,TransformerBlock和Transformer。
SelfAttention模块包含了计算Self-Attention的代码。在这个模块中,我们使用了三个线性层来计算查询(query),键(key)和值(value)。我们通过将输入张量x传递到这三个线性层中来计算它们的输出。然后,我们将这些输出变形为一个四维张量,并将它们转置以便于计算点积。接下来,我们使用拆分的方式将张量x拆分为多个头部,并分别计算它们的注意力权重和输出。最后,我们将这些输出连接起来,并将它们传递到一个全连接层中,以便将多个头部的输出集成起来。
TransformerBlock模块则是将Self-Attention与前馈神经网络结合在一起的模块。在这个模块中,我们首先计算Self-Attention的输出,然后将其与输入张量相加并进行归一化。接下来,我们将这个张量传递到一个前馈神经网络中,并再次将其与输入张量相加并进行归一化。
最后,我们定义了一个Transformer模块,它使用多个TransformerBlock模块来构建整个Transformer模型。在这个模块中,我们首先将输入张量传递到一个嵌入层中,然后将其传递到多个TransformerBlock模块中。最后,我们将输出张量传递到一个全连接层中,以便将其映射回输入空间。
在使用Transformer模型时,我们可以像使用任何其他Pytorch模型一样进行训练和推理:
```python
# 定义模型
model = Transformer(input_size, hidden_size, num_heads, num_layers)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs.view(-1, input_size), labels.view(-1))
loss.backward()
optimizer.step()
# 测试模型
with torch.no_grad():
total = 0
correct = 0
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy: %f %%' % (100 * correct / total))
```
在这个例子中,我们首先定义了一个Transformer模型,并使用交叉熵损失函数和Adam优化器来训练它。然后,我们使用测试数据集对模型进行测试,并计算其准确率。
希望这个例子能够帮助你更好地理解Transformer和Self-Attention的概念,并在Pytorch中使用它们构建模型。
阅读全文