forecast_time_obj_week = forecast_time_obj.weekday() # 判断预测的值是否周末 if forecast_time_obj_week == 6: # 判断是否是周日,0代表周一,6代表周日 pre_true_24hour = dataset_history[(week_list[-1] - 95): (week_list[-1] + 1)] else: pre_true_24hour = pre_true 代码优化
时间: 2024-01-30 19:02:19 浏览: 79
可以将判断周末的部分代码进行简化,如下所示:
```
if forecast_time_obj.weekday() == 6: # 判断是否是周日,0代表周一,6代表周日
pre_true_24hour = dataset_history[(week_list[-1] - 95): (week_list[-1] + 1)]
else:
pre_true_24hour = pre_true
```
这样可以省去中间变量`forecast_time_obj_week`的定义,使代码更加简洁。另外,如果`week_list`是一个变量,可以对其进行判断是否为空,以避免出现`IndexError`的情况。
相关问题
forecast_time = forecast_time + ' 0:00:00'#不要动空格 forecast_time_obj = datetime.datetime.strptime(forecast_time, "%Y-%m-%d %H:%M:%S") 代码优化
可以使用以下代码将两行合并并进行优化:
```
forecast_time_obj = datetime.datetime.strptime(forecast_time.strip() + ' 0:00:00', "%Y-%m-%d %H:%M:%S")
```
这样可以避免使用`+`操作符连接字符串和空格,同时使用`strip`函数去除字符串首尾空格。
import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from arch import arch_model # 读取数据 data = pd.read_csv('三个-负标准化-二分.csv', index_col=0, parse_dates=True) data = data[['F4']] data = data.dropna() # 拆分训练集和测试集 train_data = data[:'2022-06-15'] test_data = data['2022-06-16':] # ARIMA模型 arima_model = sm.tsa.ARIMA(train_data, order=(10, 1, 0)).fit() # GARCH模型 garch_model = arch_model(arima_model.resid, vol='GARCH', p=1, q=1).fit() # 预测 forecast_mean = arima_model.forecast(steps=len(test_data))[0] forecast_vol = garch_model.forecast(horizon=len(test_data)) # 计算置信区间 forecast_upper = forecast_mean + 1.96 * forecast_vol.mean forecast_lower = forecast_mean - 1.96 * forecast_vol.mean # 绘制预测结果 plt.plot(test_data.index, test_data.values, label='Actual') plt.plot(test_data.index, forecast_mean, label='Forecast') plt.fill_between(test_data.index, forecast_upper, forecast_lower, color='gray', alpha=0.2) plt.legend() plt.show() # 数据检验 resid = arima_model.resid / garch_model.conditional_volatility sm.stats.acorr_ljungbox(resid, lags=[10])这段代码的问题
这段代码的主要问题是在导入模块时没有使用正确的语法,应该在每行语句之间添加换行符。另外,最后一行代码没有输出检验结果。正确的代码应该是这样的:
```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from arch import arch_model
# 读取数据
data = pd.read_csv('三个-负标准化-二分.csv', index_col=0, parse_dates=True)
data = data[['F4']]
data = data.dropna()
# 拆分训练集和测试集
train_data = data[:'2022-06-15']
test_data = data['2022-06-16':]
# ARIMA模型
arima_model = sm.tsa.ARIMA(train_data, order=(10, 1, 0)).fit()
# GARCH模型
garch_model = arch_model(arima_model.resid, vol='GARCH', p=1, q=1).fit()
# 预测
forecast_mean = arima_model.forecast(steps=len(test_data))[0]
forecast_vol = garch_model.forecast(horizon=len(test_data))
# 计算置信区间
forecast_upper = forecast_mean + 1.96 * forecast_vol.mean
forecast_lower = forecast_mean - 1.96 * forecast_vol.mean
# 绘制预测结果
plt.plot(test_data.index, test_data.values, label='Actual')
plt.plot(test_data.index, forecast_mean, label='Forecast')
plt.fill_between(test_data.index, forecast_upper, forecast_lower, color='gray', alpha=0.2)
plt.legend()
plt.show()
# 数据检验
resid = arima_model.resid / garch_model.conditional_volatility
lb_test = sm.stats.acorr_ljungbox(resid, lags=[10])
print(lb_test)
```
这样修改后,代码就可以正常执行了。
阅读全文