train_ds, train_valid_ds = [torchvision.datasets.ImageFolder( os.path.join(data_dir, 'train_valid_test', folder), transform=transform_train) for folder in ['train', 'train_valid']] 解释代码

时间: 2024-03-04 21:52:42 浏览: 127
这段代码是用来创建 PyTorch 中的 ImageFolder 数据集对象的。ImageFolder 数据集对象是用于处理图像数据的,它将一个文件夹中的图像按照文件夹名字进行分类,并且可以对图像进行预处理(如变换、裁剪等)。 具体来说,这段代码创建了两个 ImageFolder 数据集对象:train_ds 和 train_valid_ds。这两个数据集对象分别对应了两个文件夹中的图像数据,即 "train" 和 "train_valid" 文件夹。其中 "train" 文件夹中的图像用来作为训练集,而 "train_valid" 文件夹中的图像则同时包含了训练集和验证集,用于在训练过程中进行模型的验证。 这段代码中,"data_dir" 是一个字符串变量,表示图像数据所在的文件夹路径。"transform_train" 是一个函数对象,表示对图像进行预处理的函数。这里使用了 torchvision 库中的 transforms 模块来定义了一个 transform_train 函数,用于对训练图像进行预处理。
相关问题

# 定义数据集 train_data = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'), transform=transform_train) val_data = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'val'), transform=transform_val) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True, num_workers=4) val_loader = torch.utils.data.DataLoader(val_data, batch_size=32, shuffle=False, num_workers=4),好像并没有按照一定的比例你分割数据集

确实,这段代码没有明确地按照一定的比例划分数据集。这里的 `train` 和 `val` 目录分别代表着训练集和验证集,而 `ImageFolder` 类会自动读取这些目录下的文件,并且将它们解释为不同的类别。因此,要按照一定的比例划分数据集,需要先手动将数据集文件夹按照比例划分成两个子文件夹,例如 `train` 和 `val`,然后再将这两个文件夹的路径传递给 `ImageFolder` 类来读取数据。具体地,可以按照以下步骤进行操作: 1. 首先确定划分比例,例如将数据集划分为 80% 的训练集和 20% 的验证集。 2. 在数据集根目录下创建 `train` 和 `val` 两个文件夹,并在这两个文件夹中分别创建与数据集中类别相同的子文件夹。 3. 将数据集中的所有图片按照比例分别复制到 `train` 和 `val` 两个文件夹的对应类别子文件夹中。 4. 在代码中分别传递 `train` 和 `val` 两个文件夹的路径给 `ImageFolder` 类来读取数据。 下面是一个示例代码,用于按照 80% - 20% 的比例划分数据集: ```python import os import torchvision.transforms as transforms import torchvision.datasets as datasets # 定义数据预处理 transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 定义数据集路径 data_dir = 'path/to/dataset' # 将数据集按照 80% - 20% 的比例划分为训练集和验证集 train_dir = os.path.join(data_dir, 'train') val_dir = os.path.join(data_dir, 'val') if not os.path.exists(val_dir): os.makedirs(val_dir) for class_dir in os.listdir(train_dir): class_path = os.path.join(train_dir, class_dir) if os.path.isdir(class_path): os.makedirs(os.path.join(val_dir, class_dir)) file_list = os.listdir(class_path) num_val = int(len(file_list) * 0.2) for i in range(num_val): file_name = file_list[i] src_path = os.path.join(class_path, file_name) dst_path = os.path.join(val_dir, class_dir, file_name) os.rename(src_path, dst_path) # 定义数据集 train_data = datasets.ImageFolder(train_dir, transform=transform) val_data = datasets.ImageFolder(val_dir, transform=transform) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True, num_workers=4) val_loader = torch.utils.data.DataLoader(val_data, batch_size=32, shuffle=False, num_workers=4) ``` 在这个示例代码中,我们首先定义了数据预处理方式,并且将数据集划分为 `train` 和 `val` 两个文件夹。然后,我们使用 `os.listdir()` 函数遍历了 `train` 目录下的所有类别子文件夹,并且在 `val` 目录下创建了相同的类别子文件夹。然后我们通过计算每个类别子文件夹下的图片数量,来确定需要将多少张图片移动到验证集中。最后,我们使用 `datasets.ImageFolder()` 类来读取数据,并且定义了数据加载器。

from torch.utils.data import DataLoader train_data = torchvision.datasets.CIFAR10(root="./data", train=True, transform=torchvision.transforms.ToTensor(), download=True) test_data = torchvision.datasets.CIFAR10(root="./data", train=False, transform=torchvision.transforms.ToTensor(), download=True)

这段代码是用 PyTorch 中的 DataLoader 模块加载 CIFAR10 数据集,并将训练集和测试集分别存储在 train_data 和 test_data 中。CIFAR10 是一个经典的图像分类数据集,包含 10 个类别的 60000 张 32x32 像素的彩色图像,其中 50000 张用于训练,10000 张用于测试。transforms.ToTensor() 将 PIL.Image.Image 类型的图像转换为 torch.FloatTensor 类型,且像素值范围从 [0, 255] 变成 [0, 1]。如果数据集不存在,则会自动下载到指定的 root 目录下。
阅读全文

相关推荐

# 定义数据集路径和标签 data_dir = "D:/wjd" # 数据集路径 labels = ['Ag', 'Al', 'Au', 'Cu', 'W', 'V', 'Mo', 'Ta'] # 标签 # 将数据集按照 80% - 20% 的比例划分为训练集和验证集 train_dir = os.path.join(data_dir, 'train') val_dir = os.path.join(data_dir, 'val') if not os.path.exists(val_dir): os.makedirs(train_dir) os.makedirs(val_dir) # 遍历每个标签的文件夹 for label in labels: label_dir = os.path.join(data_dir, label) images = os.listdir(label_dir) random.shuffle(images) # 随机打乱图像顺序 # 划分训练集和验证集 split_index = int(0.8 * len(images)) train_images = images[:split_index] val_images = images[split_index:] # 将训练集和验证集图像复制到对应的文件夹中 for image in train_images: src_path = os.path.join(label_dir, image) dst_path = os.path.join(train_dir, label, image) os.makedirs(os.path.dirname(dst_path), exist_ok=True) # 确保目标文件夹存在 shutil.copy(src_path, dst_path) for image in val_images: src_path = os.path.join(label_dir, image) dst_path = os.path.join(val_dir, label, image) os.makedirs(os.path.dirname(dst_path), exist_ok=True) # 确保目标文件夹存在 shutil.copy(src_path, dst_path) #print("数据集已成功划分为训练集和验证集。") # 定义数据预处理 transform_train = transforms.Compose([ transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) transform_val = transforms.Compose([ transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 定义数据集 train_data = datasets.ImageFolder(train_dir, transform=transform) val_data = datasets.ImageFolder(val_dir, transform=transform),这里出现了错误

帮我把下面这个代码从TensorFlow改成pytorch import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

最新推荐

recommend-type

java+sql server项目之科帮网计算机配件报价系统源代码.zip

sql server+java项目之科帮网计算机配件报价系统源代码
recommend-type

【java毕业设计】智慧社区老人健康监测门户.zip

有java环境就可以运行起来 ,zip里包含源码+论文+PPT, 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。 环境说明: 开发语言:Java 框架:ssm,mybatis JDK版本:JDK1.8 数据库:mysql 5.7及以上 数据库工具:Navicat11及以上 开发软件:eclipse/idea Maven包:Maven3.3及以上
recommend-type

【java毕业设计】智慧社区心理咨询平台(源代码+论文+PPT模板).zip

zip里包含源码+论文+PPT,有java环境就可以运行起来 ,功能说明: 文档开篇阐述了随着计算机技术、通信技术和网络技术的快速发展,智慧社区门户网站的建设成为了可能,并被视为21世纪信息产业的主要发展方向之一 强调了网络信息管理技术、数字化处理技术和数字式信息资源建设在国际竞争中的重要性。 指出了智慧社区门户网站系统的编程语言为Java,数据库为MYSQL,并实现了新闻资讯、社区共享、在线影院等功能。 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率

![数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率](https://img-blog.csdnimg.cn/img_convert/ea0cc949288a77f9bc8dde5da6514979.png) # 摘要 数字信号处理作为信息科技领域的重要分支,涵盖了从基础理论到高级应用的广泛内容。本文首先介绍了数字信号处理的基础知识,包括基本概念、时域与频域分析、以及核心算法和理论框架。接着,详细探讨了实现信号采样和量化、滤波器设计、以及信号增强和重建实践技巧。文章进一步深入到高级应用,包括信号压缩技术、多维信号处理,以及人工智能技术在信号处理中的集成。最后,本文评述了数字信号处理