self.state_dim = self.env.observation_space.shape[0]
时间: 2024-05-21 17:15:20 浏览: 162
根据代码推断,这行代码应该是在定义一个强化学习算法的类中,其中 `self.env` 是一个 gym 环境,`self.env.observation_space.shape[0]` 返回的是环境的观测空间的维度,也就是状态空间的维度。因此,这行代码的作用是获取当前环境的状态空间的维度,并将其赋值给算法类中的 `state_dim` 变量。
相关问题
tianshou基于pytorch的SACPolicy连续空间算法算法训练,输出训练模型pth,并利用writer.add_graph输出网络结构
好的,您可以按照以下步骤使用tianshou进行SACPolicy的训练,并且输出训练模型pth,并利用writer.add_graph输出网络结构。
1. 安装tianshou
您可以使用以下命令安装最新版本的tianshou:
```
pip install tianshou
```
2. 构建环境
您需要构建一个gym环境,然后将其传递给tianshou的环境包装器。以下是一个示例环境:
```python
import gym
import numpy as np
class MyEnv(gym.Env):
def __init__(self):
self.action_space = gym.spaces.Box(low=-1, high=1, shape=(1,))
self.observation_space = gym.spaces.Box(low=-1, high=1, shape=(1,))
self.state = np.zeros((1,))
def reset(self):
self.state = np.zeros((1,))
return self.state
def step(self, action):
action = np.clip(action, -1, 1)
reward = -np.abs(action)
self.state += action
done = False
return self.state, reward, done, {}
```
在这个环境中,我们使用一个连续的动作空间和一个连续的观测空间,每个步骤的奖励为动作的绝对值的负数。
3. 定义模型
使用tianshou的智能体API,我们可以定义我们的SACPolicy模型:
```python
import torch
import torch.nn.functional as F
from tianshou.policy import SACPolicy
class MyModel(torch.nn.Module):
def __init__(self, obs_shape, action_shape):
super().__init__()
self.obs_dim = obs_shape[0]
self.act_dim = action_shape[0]
self.fc1 = torch.nn.Linear(self.obs_dim, 64)
self.fc2 = torch.nn.Linear(64, 64)
self.mu_head = torch.nn.Linear(64, self.act_dim)
self.sigma_head = torch.nn.Linear(64, self.act_dim)
self.value_head = torch.nn.Linear(64, 1)
def forward(self, obs, state=None, info={}):
x = F.relu(self.fc1(obs))
x = F.relu(self.fc2(x))
mu = self.mu_head(x)
sigma = F.softplus(self.sigma_head(x))
value = self.value_head(x)
dist = torch.distributions.Normal(mu, sigma)
return dist, value
```
在这个模型中,我们使用两个完全连接的层来处理观察,并将输出分别传递到一个均值头和一个标准差头中。我们还添加了一个价值头来估计每个状态的价值。最后,我们将均值和标准差组合成一个正态分布,以便我们可以从中采样动作。
4. 训练模型
使用tianshou的训练API,我们可以定义我们的训练循环:
```python
import torch.optim as optim
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from torch.utils.tensorboard import SummaryWriter
env = MyEnv()
train_envs = gym.make('MyEnv-v0')
test_envs = gym.make('MyEnv-v0')
# 建立replay buffer
buffer = ReplayBuffer(size=10000, buffer_num=1)
# 建立collector
train_collector = Collector(policy, train_envs, buffer)
test_collector = Collector(policy, test_envs)
# 建立optimizer
optimizer = optim.Adam(policy.parameters(), lr=3e-4)
# 定义训练循环
result = offpolicy_trainer(
policy, train_collector, test_collector, optimizer,
max_epoch=100, step_per_epoch=1000, collect_per_step=1,
episode_per_test=10, batch_size=64, train_fn=None,
test_fn=None, stop_fn=None, writer=writer, verbose=True)
```
在这个循环中,我们首先创建一个回放缓冲区和一个collector,然后使用Adam优化器来优化我们的模型参数。我们使用offpolicy_trainer方法来训练我们的模型,其中我们设置了一些超参数,如最大epoch数、每个epoch的步数、每个步骤的收集数等。
5. 输出模型
训练完成后,我们可以将模型保存为一个.pth文件:
```python
torch.save(policy.state_dict(), 'model.pth')
```
6. 输出网络结构
最后,我们可以使用以下代码将网络结构写入TensorBoard:
```python
writer.add_graph(policy, torch.zeros((1, 1)))
```
在这个例子中,我们使用一个大小为1的观察空间,以便我们可以将模型传递给writer.add_graph方法。这将在TensorBoard中显示我们的网络结构。
Python基于ddpg的路径规划算法,用highway-env,运行实现算法收敛
首先,DDPG(Deep Deterministic Policy Gradient)是一种基于Actor-Critic的深度强化学习算法,可用于解决连续动作空间的问题。而路径规划是一种典型的强化学习问题,因此可以使用DDPG算法来解决路径规划问题。
在Python中,可以使用TensorFlow或PyTorch等深度学习框架来实现DDPG算法。同时,可以使用highway-env这个Python库作为强化学习环境,用于测试DDPG算法的效果。
下面是一个基于TensorFlow实现的DDPG算法的示例代码,用于解决路径规划问题:
```python
import tensorflow as tf
import numpy as np
import gym
import highway_env
from ddpg import DDPG
# 创建环境
env = gym.make('highway-v0')
# 设置DDPG算法的超参数
actor_lr = 0.0001
critic_lr = 0.001
gamma = 0.99
tau = 0.001
buffer_size = 1000000
batch_size = 64
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
# 创建DDPG对象
ddpg = DDPG(actor_lr, critic_lr, gamma, tau, buffer_size, batch_size, action_dim, state_dim)
# 训练DDPG算法
for i in range(5000):
obs = env.reset()
done = False
while not done:
action = ddpg.choose_action(obs)
next_obs, reward, done, info = env.step(action)
ddpg.store_transition(obs, action, reward, next_obs, done)
if len(ddpg.memory) > batch_size:
ddpg.learn()
obs = next_obs
# 测试DDPG算法的效果
obs = env.reset()
done = False
while not done:
action = ddpg.choose_action(obs)
next_obs, reward, done, info = env.step(action)
obs = next_obs
env.render()
```
在上面的代码中,DDPG类的实现可以参考如下代码:
```python
class DDPG:
def __init__(self, actor_lr, critic_lr, gamma, tau, buffer_size, batch_size, action_dim, state_dim):
self.actor_lr = actor_lr
self.critic_lr = critic_lr
self.gamma = gamma
self.tau = tau
self.batch_size = batch_size
self.action_dim = action_dim
self.state_dim = state_dim
self.memory = []
self.buffer_size = buffer_size
self.actor = self.build_actor()
self.critic = self.build_critic()
self.target_actor = self.build_actor()
self.target_critic = self.build_critic()
self.update_target_op = self.update_target_network()
# 创建Actor网络
def build_actor(self):
inputs = tf.keras.layers.Input(shape=(self.state_dim,))
x = tf.keras.layers.Dense(256, activation='relu')(inputs)
x = tf.keras.layers.Dense(128, activation='relu')(x)
outputs = tf.keras.layers.Dense(self.action_dim, activation='tanh')(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=self.actor_lr), loss='mse')
return model
# 创建Critic网络
def build_critic(self):
state_inputs = tf.keras.layers.Input(shape=(self.state_dim,))
state_x = tf.keras.layers.Dense(256, activation='relu')(state_inputs)
state_x = tf.keras.layers.Dense(128, activation='relu')(state_x)
action_inputs = tf.keras.layers.Input(shape=(self.action_dim,))
action_x = tf.keras.layers.Dense(128, activation='relu')(action_inputs)
x = tf.keras.layers.Concatenate()([state_x, action_x])
x = tf.keras.layers.Dense(128, activation='relu')(x)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs=[state_inputs, action_inputs], outputs=outputs)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=self.critic_lr), loss='mse')
return model
# 更新目标网络
def update_target_network(self):
weights = []
targets = self.target_actor.weights
for i, weight in enumerate(self.actor.weights):
weights.append(weight * self.tau + targets[i] * (1 - self.tau))
self.target_actor.set_weights(weights)
weights = []
targets = self.target_critic.weights
for i, weight in enumerate(self.critic.weights):
weights.append(weight * self.tau + targets[i] * (1 - self.tau))
self.target_critic.set_weights(weights)
# 存储经验
def store_transition(self, state, action, reward, next_state, done):
self.memory.append([state, action, reward, next_state, done])
if len(self.memory) > self.buffer_size:
self.memory.pop(0)
# 选择动作
def choose_action(self, state):
state = np.array([state])
action = self.actor.predict(state)[0]
return action
# 学习
def learn(self):
minibatch = np.random.choice(self.memory, self.batch_size, replace=False)
states = np.array([transition[0] for transition in minibatch])
actions = np.array([transition[1] for transition in minibatch])
rewards = np.array([transition[2] for transition in minibatch])
next_states = np.array([transition[3] for transition in minibatch])
dones = np.array([transition[4] for transition in minibatch])
# 更新Critic网络
with tf.GradientTape() as tape:
next_actions = self.target_actor.predict(next_states)
target_next_q = self.target_critic.predict([next_states, next_actions])
target_q = rewards + self.gamma * target_next_q * (1 - dones)
q = self.critic.predict([states, actions])
critic_loss = tf.reduce_mean(tf.square(target_q - q))
critic_grads = tape.gradient(critic_loss, self.critic.trainable_variables)
self.critic.optimizer.apply_gradients(zip(critic_grads, self.critic.trainable_variables))
# 更新Actor网络
with tf.GradientTape() as tape:
actor_actions = self.actor.predict(states)
actor_loss = -tf.reduce_mean(self.critic([states, actor_actions]))
actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables)
self.actor.optimizer.apply_gradients(zip(actor_grads, self.actor.trainable_variables))
# 更新目标网络
self.update_target_network()
```
最后,运行上述代码,可以得到DDPG算法在highway-env环境下的路径规划效果。
阅读全文