mean = np.mean(data) std = np.std(data) threshold = 3 * std data = data[abs(data - mean) < threshold]如何导入原始数据
时间: 2024-05-14 12:12:35 浏览: 47
在使用这段代码之前,需要先将原始数据存储在一个变量中,例如:
```python
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```
然后,将上述代码插入到程序中,如下所示:
```python
import numpy as np
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
mean = np.mean(data)
std = np.std(data)
threshold = 3 * std
data = data[abs(data - mean) < threshold]
print(data)
```
这将输出筛选后的数据。请注意,导入数据的方法取决于数据的来源和格式。如果数据存储在文件中,可以使用Python的文件读取函数来导入数据。如果数据存储在数据库中,可以使用适当的数据库连接库来导入数据。
相关问题
mean = np.mean(data) std = np.std(data) threshold = 3 * std data = data[abs(data - mean) < threshold]
This code calculates the mean and standard deviation of a dataset (stored in the variable 'data') using the NumPy library. It then sets a threshold value as 3 times the standard deviation. The code next selects only the values in the dataset that are within this threshold range of the mean, effectively removing any outliers. The updated dataset is then stored back into the 'data' variable.
使用C++ eigen库翻译以下python代码import pandas as pd import numpy as np import time import random def main(): eigen_list = [] data = [[1,2,4,7,6,3],[3,20,1,2,5,4],[2,0,1,5,8,6],[5,3,3,6,3,2],[6,0,5,2,19,3],[5,2,4,9,6,3]] g_csi_corr = np.cov(data, rowvar=True) #print(g_csi_corr) eigenvalue, featurevector = np.linalg.eigh(g_csi_corr) print("eigenvalue:",eigenvalue) eigen_list.append(max(eigenvalue)) #以下代码验证求解csi阈值 eigen_list.append(1.22) eigen_list.append(-54.21) eigen_list.append(8.44) eigen_list.append(-27.83) eigen_list.append(33.12) #eigen_list.append(40.29) print(eigen_list) eigen_a1 = np.array(eigen_list) num1 = len(eigen_list) eigen_a2 = eigen_a1.reshape((-1, num1)) eigen_a3 = np.std(eigen_a2, axis=0) eigen_a4 = eigen_a3.tolist() k = (0.016 - 0.014) / (max(eigen_a4) - min(eigen_a4)) eigen_a5 = [0.014 + k * (i - min(eigen_a4)) for i in eigen_a4] tri_threshold = np.mean(eigen_a5)
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
std::vector<double> eigen_list;
MatrixXd data(6, 6);
data << 1, 2, 4, 7, 6, 3,
3, 20, 1, 2, 5, 4,
2, 0, 1, 5, 8, 6,
5, 3, 3, 6, 3, 2,
6, 0, 5, 2, 19, 3,
5, 2, 4, 9, 6, 3;
MatrixXd g_csi_corr = data.transpose() * data / 6.0;
EigenSolver<MatrixXd> es(g_csi_corr);
VectorXd eigenvalue = es.eigenvalues().real();
std::cout << "eigenvalue: " << eigenvalue.transpose() << std::endl;
eigen_list.push_back(eigenvalue.maxCoeff());
eigen_list.push_back(1.22);
eigen_list.push_back(-54.21);
eigen_list.push_back(8.44);
eigen_list.push_back(-27.83);
eigen_list.push_back(33.12);
//eigen_list.push_back(40.29);
std::cout << "eigen_list: ";
for (std::vector<double>::iterator it = eigen_list.begin(); it != eigen_list.end(); ++it)
std::cout << *it << " ";
std::cout << std::endl;
int num1 = eigen_list.size();
MatrixXd eigen_a2 = Map<MatrixXd>(eigen_list.data(), num1, 1);
VectorXd eigen_a3 = eigen_a2.array().rowwise().mean().transpose();
VectorXd eigen_a4 = (eigen_a2 - eigen_a3.replicate(num1, 1)).array().abs().rowwise().mean().transpose();
double k = 0.002 / (eigen_a4.maxCoeff() - eigen_a4.minCoeff());
VectorXd eigen_a5 = 0.014 + k * (eigen_a4.array() - eigen_a4.minCoeff());
double tri_threshold = eigen_a5.mean();
std::cout << "tri_threshold: " << tri_threshold << std::endl;
return 0;
}
阅读全文